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Abstract. We study the uniqueness of the decomposition of an nth order tensor (also called n-way
array) into a sum of R rank-1 terms (where each term is the outer product of n vectors). This decomposition
is also known as Parafac or Candecomp, and a general uniqueness condition for n ¼ 3 was obtained by Kruskal
in 1977 [Linear Algebra Appl., 18 (1977), pp. 95–138]. More recently, Kruskal’s uniqueness condition has been
generalized to n ≥ 3, and less restrictive uniqueness conditions have been obtained for the case where the
vectors of the rank-1 terms are linearly independent in (at least) one of the n modes. We consider the decom-
position with some form of symmetry, and prove necessary, sufficient, and necessary and sufficient uniqueness
conditions analogous to the asymmetric case. For n ¼ 3, 4, 5, we also prove generic uniqueness bounds on R.
Most of these conditions are easy to check. Throughout, we emphasize the analogies and striking differences
between the symmetric and asymmetric cases.
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1. Introduction. Tensors of order n are defined on the outer product of n linear
spaces, T l, 1 ≤ l ≤ n. Once bases of spaces T l are fixed, they can be represented by
n-way arrays. For simplicity, tensors are usually assimilated with their array represen-
tation.

We consider the nth order tensor decomposition of the form

X̲ ¼
XR
r¼1

að1Þr ∘ að2Þr ∘ · · · ∘ aðnÞr ;ð1:1Þ

where X̲ ∈ RI 1×I 2× · · ·×I n is an nth order tensor (or n-way array), aðjÞr ∈ RI j are vectors,
and ∘ denotes the outer vector product. For vectors að1Þ; : : : ; aðnÞ, the outer vector pro-
duct að1Þ ∘ · · · ∘ aðnÞ is an nth order tensor with entries að1Þi1

a
ð2Þ
i2

· · · aðnÞin
. We refer to X̲ in

(1.1) as having n modes, and the j in aðjÞr corresponds to mode j. Let
AðjÞ ¼ ½aðjÞ1 jaðjÞ2 j : : : jaðjÞR � denote the jth component matrix. Hence, matrix AðjÞ has size
I j × R. We denote an nth order decomposition (1.1) as ðAð1Þ; : : : ;AðnÞÞ. Note that when
the modes of X̲ are permuted in (1.1), the component matrices AðjÞ are permuted iden-
tically.

An nth order tensor has rank 1 if it can be written as the outer product of n vectors.
The rank of an nth order tensor X̲ is defined as the smallest number of rank-1 tensors
whose sum equals X̲. Hence, (1.1) decomposes X̲ into R rank-1 terms. Hitchcock [15],
[16] introduced tensor rank and the related tensor decomposition (1.1). The same de-
composition was proposed independently by Carroll and Chang [3] and Harshman [14]
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for component analysis of nth order tensors. They named it Candecomp and Parafac,
respectively.

For a given nth order tensor and number R of rank-1 components, a best fitting
decomposition (1.1) is usually found by an iterative algorithm. The most well-known
algorithm is alternating least squares. A comparison of algorithms for n ¼ 3 can be
found in Tomasi and Bro [46]. Note that a best fitting decomposition is a best rank-
R approximation of the tensor.

Real-valued applications of tensor decompositions occur in psychology and chem-
istry; see Kroonenberg [22], Kiers and Van Mechelen [19], and Smilde, Bro, and Geladi
[32]. Complex-valued tensor decompositions are used in, e.g., signal processing and tele-
communications research; see Sidiropoulos, Giannakis, and Bro [30], Sidiropoulos, Bro,
and Giannakis [31], and De Lathauwer and Castaing [8]. For a general overview of ap-
plications of the decomposition (1.1) and related decompositions, see Kolda and Bader
[20] or Acar and Yener [1].

A drawback of computing a best fitting tensor decomposition (1.1) is that an opti-
mal solution may not exist. Indeed, a tensor may not have a best rank-R approximation.
This is due to the fact that the set of tensors of rank at most R is not closed forR ≥ 2; see
De Silva and Lim [11]. In such cases, some columns of the AðjÞ become nearly linearly
dependent and large in magnitude while running an iterative algorithm designed to find
a best rank-R approximation; see Krijnen, Dijkstra, and Stegeman [21]. This phenom-
enon is known as “diverging components” or “degeneracy”; see Kruskal, Harshman, and
Lundy [24] and Stegeman [33], [34], [35], [36]. This problem can be fixed by including
interaction terms in the decomposition; see Stegeman and De Lathauwer [42] for the case
n ¼ 3 and I 3 ¼ 2, Rocci and Giordani [28] for the case n ¼ 3 and R ¼ 2, and Stegeman
[39] for a general approach for n ¼ 3 and R ≤ minðI 1; I 2; I 3Þ.

An attractive feature of the decomposition (1.1) is that it is unique up to permuta-
tion and scaling under mild conditions. We define the uniqueness of (1.1) as follows.

DEFINITION 1.1. The decomposition ðAð1Þ; : : : ;AðnÞÞ is called unique up to permuta-
tion and scaling if any alternative decomposition ðBð1Þ; : : : ;BðnÞÞ satisfies BðjÞ ¼
AðjÞΠΛj, j ¼ 1; : : : ; n, with Π an R× R permutation matrix and Λj nonsingular diag-
onal matrices such that

Q
n
j¼1 Λj ¼ IR. ▯

Hence, an nth order decomposition is unique up to permutation and scaling if the
only ambiguities it contains are the permutation of the R rank-1 components and the
scaling of the n vectors constituting each rank-1 component. Two decompositions that
are equal up to these indeterminacies are called equivalent.

The classical uniqueness condition for n ¼ 3 is due to Kruskal [23]. Kruskal’s con-
dition relies on a particular concept of matrix rank that he introduced, which has been
named k-rank (after him). Specifically, the k-rank of a matrix is the largest number x
such that every subset of x columns of the matrix is linearly independent. We denote the
k-rank of a matrix A as kA. For a decomposition ðAð1Þ;Að2Þ;Að3ÞÞ, Kruskal [23] proved
that

2Rþ 2 ≤ kAð1Þ þ kAð2Þ þ kAð3Þð1:2Þ

is a sufficient condition for uniqueness up to permutation and scaling. A more condensed
and accessible proof of (1.2) was given by Stegeman and Sidiropoulos [41]. See Rhodes
[27] for a different approach. Kruskal’s uniqueness condition was generalized to n ≥ 3 by
Sidiropoulos and Bro [29]: for a decomposition ðAð1Þ; : : : ;AðnÞÞ the uniqueness condition
becomes
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2Rþ ðn− 1Þ ≤
Xn
j¼1

kAðjÞ :ð1:3Þ

From (1.3), it can be seen that the uniqueness condition becomes less restrictive as the
order n increases. Indeed, when increasing n by one the right-hand side of (1.3) increases
with an additonal k-rank, while the left-hand side increases by one only. Note that the
k-ranks in (1.3) may not be zero. Indeed, kAðjÞ ¼ 0 implies (by convention) that AðjÞ has
an all-zero column and, hence, that the decomposition contains an all-zero term among
itsR terms. In this case we have nonuniqueness: an alternative decomposition intoR− 1
rank-1 terms is possible.

Less restrictive uniqueness conditions have been obtained for the case where (at

least) one of the component matrices AðjÞ has rank R; i.e., the vectors aðjÞr ,
r ¼ 1; : : : ; R, are linearly independent in (at least) one mode j. See Jiang and Sidiro-
poulos [18] for n ¼ 3, De Lathauwer [7] for n ¼ 3 and n ¼ 4, and Stegeman [38]
for n ≥ 3.

In this paper, we consider the nth order decomposition (1.1) with some form of
symmetry, that is, a decomposition ðAð1Þ; : : : ;AðnÞÞ in which some of the component
matrices are identical. For example, if n ¼ 3 and Að1Þ ¼ Að2Þ, then the entries of X̲
are symmetric in the first two modes: xijk ¼ xjik for all i, j, k. If n ¼ 4 and
Að1Þ ¼ Að2Þ, then we have xijkl ¼ xjikl for all i, j, k, l. We assume that the modes of
the decomposition are permuted such that identical component matrices occur in
the first few modes. In what follows, we will sometimes refer to a decomposition with
some form of symmetry as a “symmetric decomposition.”

Due to the scaling indeterminacy, a symmetric decomposition can have component
matrices with proportional columns (e.g., Að1Þ ¼ Að2ÞΛ with a nonsingular diagonal
matrix Λ) instead of identical component matrices. When (at least) one mode is
excluded from the symmetry, the constants of proportionality can be absorbed in
the component matrix corresponding to that mode. For convenience, we assume iden-
tical component matrices instead of proportional columns.

Applications of the tensor decomposition (1.1) with some form of symmetry are the
following. The case n ¼ 3 and Að1Þ ¼ Að2Þ corresponds to the Indscal model introduced
by Carrol and Chang [3]. Indscal is a multidimensional scaling method for the case where
several symmetric matrices of proximities or (dis)similarities are available for the same
objects. In signal processing, the same form of symmetry occurs in the so-called second
order blind identification (SOBI) method; see Belouchrani et al. [2]. Here, the goal is to
separate signal sources from an observed mixture of signals by decomposing a set of
covariance matrices, each measured at a different point in time. For the underdeter-
mined case of SOBI we refer to De Lathauwer and Castaing [10]. Other blind separation
methods resulting in a decomposition with the same form of symmetry include Pham
and Cardoso [26], who also use covariance matrices, and Yeredor [47], who uses second
order derivatives of the characteristic function of the observed signal mixture. For an
overview of these models, we refer to Yeredor [48]. For n ¼ 4 andAðjÞ ¼ A, j ¼ 1, 2, 3, 4,
the tensor decomposition (1.1) describes the basic structure of fourth order cumulants of
multivariate data on which a lot of algebraic methods for independent component ana-
lysis (ICA) are based (Comon [4], De Lathauwer, De Moor, and Vandewalle [6], and
Hyvärinen, Karhunen, and Oja [17]). For an ICA algorithm explicitly using (1.1) with
this form of symmetry we refer to De Lathauwer, Castaing, and Cardoso [9]. For n ¼ 5,
Að1Þ ¼ Að3Þ, and Að2Þ ¼ Að4Þ, the decomposition (1.1) can be found in De Vos et al. [12].
This form of decomposition results from combining the third order decomposition with
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ICA in one mode. Finally, the case n ¼ 5 andAðjÞ ¼ A, j ¼ 1, 2, 3, 4, appears in Ferréol,
Albera, and Chevalier [13] where a blind separation method is proposed that uses a set of
fourth order cumulants, each measured at a different point in time.

In signal processing applications, forms of symmetry may occur with, e.g.,Að1Þ equal
to the complex conjugate of Að2Þ. The description of the applications above refers to the
real case (if a complex case exists also), and throughout we will consider real-valued
decompositions. However, our results can be translated easily to the complex case. This
will be elaborated upon in the discussion section at the end of this paper.

We focus on the uniqueness properties of (1.1) when some form of symmetry is pre-
sent. Uniqueness of such a decomposition is not necessarily identical to uniqueness of its
asymmetric counterpart. Indeed, if a particular form of symmetry is inherent to the de-
composition, then this form of symmetry must also be present in an alternative decom-
position. Hence, the set of symmetric alternative decompositions is a subset of the set of
all alternative decompositions. However, some uniqueness conditions for the asymmetric
case can still be used. If the uniqueness condition (1.3) holds for a decomposition
ðAð1Þ; : : : ;AðnÞÞ with some form of symmetry, then the decomposition is unique up
to permutation and scaling. Hence, there are no nonequivalent asymmetric or symmetric
alternatives. One of the main results of this paper is that if (at least) one of the com-
ponent matrices AðjÞ has rank R, and mode j is excluded from the symmetry, then un-
iqueness with respect to the set of symmetric alternatives is identical to uniqueness with
respect to the set of asymmetric alternatives.

In Stegeman [38] an overview is presented of necessary, sufficient, necessary and
sufficient, and generic uniqueness conditions for the asymmetric nth order decomposi-
tion (1.1). The generic uniqueness conditions hold for decompositions with generic
Að1Þ; : : : ;Aðn−1Þ and rankðAðnÞÞ ¼ R and give a bound on R in terms of I 1; : : : ; I n−1.
In this paper, we prove symmetric analogues of most of these conditions. Although
the symmetric uniqueness conditions are mostly analogous to the asymmetric ones,
sometimes a more complicated proof is needed when symmetry is present. The most
striking difference concerns the generic uniqueness bounds on R, which are much more
restrictive in the presence of symmetry.

Our analysis yields more insight into the uniqueness of (1.1) with some form of sym-
metry. Moreover, our results include easy-to-check uniqueness conditions, and they can
be applied to an important class of applications. The organization of this paper is as
follows. Section 2 contains definitions and notation. In section 3, we prove our necessary
uniqueness conditions. In section 4, we consider the case where (at least) one of the com-
ponent matrices AðjÞ has rank R, and mode j is excluded from the symmetry. For con-
venience, we take j ¼ n. For decompositions with symmetry, we prove necessary and
sufficient uniqueness conditions and an easy-to-check sufficient uniqueness condition
analogous to [38]. Moreover, we show that all alternative decompositions have the same
form of symmetry as the original decomposition when rankðAðnÞÞ ¼ R and
rankðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ ¼ R. In section 5, we prove generic uniqueness bounds for
n ¼ 3, 4, 5 and several forms of symmetry. Each of sections 3, 4, and 5 starts with a
summary of the uniqueness conditions proven in [38] for the asymmetric case. Section 6
contains several examples illustrating our results from sections 4 and 5 for the case n ¼ 3
and Að1Þ ¼ Að2Þ. Finally, section 7 contains a discussion of our results.

2. Definitions and notation. We will denote vectors as x, matrices (second order
tensors, 2-way arrays) asX, and higher order tensors (multiway arrays) as X̲. We use ⊗
to denote the usual Kronecker product, and ⊙ denotes the (columnwise) Khatri–Rao
product; i.e., for matrices X and Y with R columns, X ⊙ Y ¼ ½x1 ⊗ y1j : : : jxR ⊗ yR�.
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The transpose of X is denoted as XT , and diagðxÞ denotes the diagonal matrix with the
entries in vector x on its diagonal. We refer to a matrix as having full column rank if its
rank equals its number of columns. Analogously, a matrix has full row rank if its rank
equals its number of rows.

Next, we define some concepts. A mode-j vector of an I 1 × I 2× · · · ×I n tensor is
defined as an I j × 1 vector that is obtained by varying the jth index and keeping the
other indices fixed. A mode-jmatrix unfolding of a tensor is defined as a matrix contain-
ing all mode-j vectors as either rows or columns. For the decomposition ðAð1Þ; : : : ;AðnÞÞ
in (1.1), we define the mode-j matrix unfolding as

�
⨀
n

i≠j
AðiÞ

�
ðAðjÞÞT ;ð2:1Þ

where ⨀ denote a series of (columnwise) Khatri–Rao products.
For decompositions with some form of symmetry, we introduce the following nota-

tion to define the form of symmetry. Let E ¼ fE1; : : : ; Epg with each Eq ⊆ f1; : : : ; ng
containing mode numbers for which the component matrices are identical; i.e., for
i ≠ j and some q,

i; j ∈ Eq ⇔ AðiÞ ¼ AðjÞ:ð2:2Þ

Hence, j ∈ E if and only if AðjÞ is identical to some other component matrix. We require
that Eq ∩ Eu ¼ ∅ for q ≠ u.

3. Necessary uniqueness conditions. Here, we prove two necessary uniqueness
conditions for decompositions with some form of symmetry. The conditions are
symmetric analogues of necessary uniqueness conditions proven in [38]. The asymmetric
conditions of [38] are stated in section 3.1, while section 3.2 contains the symmetric
results.

3.1. Asymmetric decompositions. Below, we state two necessary uniqueness
results by [38] for an asymmetric decomposition ðAð1Þ; : : : ;AðnÞÞ.

LEMMA 3.1. If rankð⨀n
i≠j A

ðiÞÞ < R for some j ∈ f1; : : : ; ng, n ≥ 3, then the decom-
position ðAð1Þ; : : : ;AðnÞÞ is not unique up to permutation and scaling. Moreover, an al-
ternative decomposition into R− 1 rank-1 terms exists. ▯

LEMMA 3.2. If the decomposition ðAð1Þ; : : : ;AðnÞÞ, n ≥ 3, contains n− 2 distinct
component matrices that have columns s and t proportional, s ≠ t, then the decomposi-
tion is not unique up to permutation and scaling. ▯

Lemma 3.1 states that any Khatri–Rao product of all but one component matrix has
full column rank if the decomposition is unique. For n ¼ 3, this result is due to Liu and
Sidiropoulos [25]. For n ¼ 3, Lemma 3.2 states the well-known necessary uniqueness
condition kAðjÞ ≥ 2 for j ¼ 1, 2, 3.

3.2. Decompositions with some form of symmetry. Our symmetric analogue
of Lemma 3.1 is the following.

LEMMA 3.3. Let the decomposition ðAð1Þ; : : : ;AðnÞÞ have some form of symmetry,
n ≥ 3. If rankð⨀n

i≠j A
ðiÞÞ < R for some j ∈ f1; : : : ; ng, and j ∈= E, then the decomposi-

tion is not unique up to permutation and scaling. Moreover, an alternative decomposi-
tion into R− 1 rank-1 terms exists with the same form of symmetry.

Proof. The proof is identical to the proof of Stegeman [38, Lemma 3.1]. We repeat it
for completeness. Suppose ð⨀n

i≠j A
ðiÞÞx ¼ 0 for some nonzero vector x. Then the mode-j
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matrix unfolding of the decomposition satisfies
�
⨀
n

i≠j
AðiÞ

�
ðAðjÞÞT ¼

�
⨀
n

i≠j
AðiÞ

�
ðAðjÞ þ yxT ÞTð3:1Þ

for any vector y. Hence, in the decomposition we may replace AðjÞ by ðAðjÞ þ yxT Þ for
any vector y. This proves nonuniqueness. Moreover, we can choose y such that one col-
umn, say column p, of ðAðjÞ þ yxT Þ vanishes. Hence, a decomposition into R− 1 rank-1
terms can be obtained by deleting columns aðiÞp from each component matrix AðiÞ, i ≠ j,
and replacing AðjÞ by ðAðjÞ þ yxT Þ with its all-zero column p deleted. ▯

In the proof of Lemma 3.3 an alternative decomposition is constructed by changing
only AðjÞ. When j ∈= E, the alternative decomposition features the same form of symme-
try as the original decomposition. This raises the question of whether Lemma 3.3 is still
true for j ∈ E. In that case, changing onlyAðjÞ yields an alternative decomposition with a
different form of symmetry (or none at all). We were not able to prove Lemma 3.3 for
this case. However, we also have not found a counterexample; that is, a unique decom-
position for which ð⨀n

i≠j A
ðiÞÞ has rank less than R and j ∈ E. Hence, this issue remains

an open question.
For j ¼ n ¼ 3 and Að1Þ ¼ Að2Þ, it is conjectured that the existence of an asymmetric

nonequivalent alternative decomposition implies the existence of a symmetric nonequi-
valent alternative decomposition. If this is true, then rankðAð1Þ ⊙ Að3ÞÞ < R implies non-
uniqueness. No counterexample to this conjecture has been found so far. Proofs of the
conjecture for various cases can be found in Ten Berge, Sidiropoulos, and Rocci [44] and
Ten Berge, Stegeman, and Bennani Dosse [45].

Next, we show that Lemma 3.2 remains true in the symmetric case. Its proof,
however, is more complicated.

LEMMA 3.4. Let the decomposition ðAð1Þ; : : : ;AðnÞÞ have some form of symmetry,
n ≥ 3. If there exist n− 2 distinct component matrices that have columns s and t pro-
portional, s ≠ t, then the decomposition is not unique up to permutation and scaling.

Proof. Without loss of generality, let aðjÞs ¼ αðjÞaðjÞt for j ¼ 1; : : : ; n− 2. If n− 1 ∈=
E and n ∈= E, then the proof is identical to Stegeman [38, Lemma 3.2]. We repeat this
proof for completeness. For the rank-1 terms s and t of the decomposition we have

að1Þs ∘ · · · ∘ aðnÞs þ að1Þt ∘ · · · ∘ aðnÞt ¼ að1Þt ∘ · · · ∘ aðn−2Þ
t ∘ ½ ~αaðn−1Þ

s jaðn−1Þ
t �½aðnÞs jaðnÞt �T

¼ að1Þt ∘ · · · ∘ aðn−2Þ
t ∘ ½ ~αaðn−1Þ

s jaðn−1Þ
t �Uð½aðnÞs jaðnÞt �U−T ÞT

ð3:2Þ

with ~α ¼ Q
n−2
j¼1 α

ðjÞ and U a nonsingular 2× 2 matrix. Since U is not limited to the pro-
duct of a permutation matrix and a nonsingular diagonal matrix, (3.2) implies non-
uniqueness. As can be seen, the nonuniqueness of the matrix decomposition (second
order) is used here. Also, since the first n− 2 component matrices are changed identi-
cally (by replacing column s by column t), the alternative decomposition features the
same form of symmetry as the original decomposition.

Next, suppose n− 1 ∈ E and n ∈= E. Then columns s and t of AðjÞ are proportional,
j ¼ 1; : : : ; n− 1. This implies that columns s and t of ð⨀n−1

j¼1 AðjÞÞ are proportional.
Hence, the latter has rank less than R. By Lemma 3.3, the decomposition is not unique,
and an alternative decomposition (with the same form of symmetry) exists with R− 1
components.

Next, suppose n− 1 ∈ E and n ∈ E with Aðn−1Þ ≠ AðnÞ. Then columns s and t ofAðjÞ

are proportional, j ¼ 1; : : : ; n. Let aðjÞs ¼ αðjÞaðjÞt also for j ¼ n− 1, n. This implies that
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að1Þs ∘ · · · ∘ aðnÞs þ að1Þt ∘ · · · ∘ aðnÞt ¼ ð1þ ᾱÞðað1Þt ∘ · · · ∘ aðnÞt Þð3:3Þ

with ᾱ ¼ Q
n
j¼1 α

ðjÞ. Hence, the sum of these two rank-1 terms is a rank-1 term itself. An
alternative decomposition featuring R− 1 components and the same form of symmetry
can be constructed as follows. In each component matrix we delete column t. If

E ≠ f1; : : : ; ng, then there exists i ∈= E. We replace aðiÞs by ð1þ ᾱÞaðiÞt , and we replace

aðjÞs by aðjÞt for j ≠ i. Next, suppose E ¼ f1; : : : ; ng. If there exists Eq with odd cardinality

k, then we replace aðiÞs by ð1þ ᾱÞð1 ∕ kÞaðiÞt for i ∈ Eq, and we replace aðjÞs by aðjÞt for j ∈= Eq.
If there does not exist Eq with odd cardinality, then ᾱ is a product of squared numbers

and, hence, ᾱ ≥ 0. In this case, we replace aðjÞs by ð1þ ᾱÞð1 ∕ nÞaðjÞt for j ¼ 1; : : : ; n.
It remains to consider the case n− 1 ∈ E and n ∈ E with Aðn−1Þ ¼ AðnÞ. Let n− 1,

n ∈ Eq. If j ∈ Eq for some 1 ≤ j ≤ n− 2, then (3.3) holds, and we can proceed as above.
The same is true when aðnÞs and aðnÞt are proportional. Next, suppose Eq ¼ fn− 1; ng and
aðnÞs and aðnÞt are not proportional (or all-zero). Let

S ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ~αβ2
p

− ~αβ

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ~αβ2

p
�

ð3:4Þ

with ~α ¼ Q
n−2
j¼1 α

ðjÞ as above and β chosen such that 1− ~αβ2 > 0. Let ½āðnÞs jāðnÞt � ¼
½aðnÞs jaðnÞt �S. It can be verified that Sdiagð ~α; 1ÞST ¼ diagð ~α; 1Þ. This implies that, ana-
logous to (3.2), we have

að1Þs ∘ · · · ∘ aðnÞs þ að1Þt ∘ · · · ∘ aðnÞt ¼ að1Þt ∘ · · · ∘ aðn−2Þ
t ∘ ½ ~αaðnÞs jaðnÞt �½aðnÞs jaðnÞt �T

¼ að1Þt ∘ · · · ∘ aðn−2Þ
t ∘ ½ ~αāðn−1Þ

s jāðn−1Þ
t �½āðnÞs jāðnÞt �T ;

¼ að1Þs ∘ · · · ∘ aðn−2Þ
s ∘ āðnÞs ∘ āðnÞs þ āð1Þt ∘ · · · ∘ āðn−2Þ

t ∘ āðnÞt ∘ āðnÞt ;

ð3:5Þ

which shows nonuniqueness of the decomposition. Note that the alternative decomposi-
tion is constructed by changing only Aðn−1Þ ¼ AðnÞ and features the same form of sym-
metry as the original decomposition. This completes the proof. ▯

4. Uniqueness conditions for the case rank�A�n�� � R. Here, we consider un-
iqueness conditions for a decomposition ðAð1Þ; : : : ;AðnÞÞ with some component matrix
AðjÞ having full column rank R. For convenience, we set j ¼ n. Section 4.1 states the
uniqueness conditions of [38] for the asymmetric case. Section 4.2 contains the analogues
for decompositions with some form of symmetry. Also, we show that all alternative de-
compositions have the same form of symmetry as the original decomposition when
rankðAðnÞÞ ¼ R and rankðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ ¼ R.

4.1. Asymmetric decompositions. We assume that ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ has
full column rank R, and we denote an alternative decomposition as ðBð1Þ; : : : ;BðnÞÞ.
Equating the mode-n matrix unfoldings of the two decompositions yields

ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞðAðnÞÞT ¼ ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞðBðnÞÞT :ð4:1Þ

Since the left-hand side of (4.1) has rank R, it also follows that the two matrices on
the right-hand side of (4.1) have rank R. Uniqueness of the decomposition is not affected
by premultiplying a component matrix by a nonsingular matrix. Let S be nonsingular
such that SAðnÞ ¼ ½IRO �. When replacing AðnÞ in (4.1) by SAðnÞ, the full column rank of
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ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ guarantees that the last I n − R rows of BðnÞ are all-zero. Hence,
without loss of generality we may set AðnÞ ¼ IR (and I n ¼ R) and BðnÞ square and non-
singular. For n ¼ 3 this was shown by Ten Berge and Sidiropoulos [43]. We rewrite
(4.1) as

ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞðBðnÞÞ−T ¼ ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ:ð4:2Þ

The following result of [38] shows that uniqueness holds if and only if each linear com-
bination of the columns of ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ has at most one nonzero coefficient. For
n ¼ 3 this is due to Jiang and Sidiropoulos [18]. Let ωð·Þ denote the number of nonzero
entries of a vector.

THEOREM 4.1. Let ðAð1Þ; : : : ;AðnÞÞ, n ≥ 3, be a decomposition with rankðAðnÞÞ ¼ R.
Then the decomposition is unique up to permutation and scaling if and only if, for any
vector d ∈ RR,

ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞd ¼ ðf1 ⊗ · · ·⊗ fn−1Þ implies ωðdÞ ≤ 1: ▯ð4:3Þ

Condition (4.3) implies full column rank of ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ. Condition (4.3) is
not easy to check. Reshaping it into I 1× · · · ×I n−1 tensor form yields

rank

�
̲Y ¼

XR
r¼1

drðað1Þr ∘ · · · ∘ aðn−1Þ
r Þ

�
≤ 1 implies ωðdÞ ≤ 1ð4:4Þ

with d ¼ ðd1; d2; : : : ; dRÞT . Stegeman [38, Lemma 4.6] shows that an (n− 1)th order
tensor has rank at most 1 if and only if its mode-j matrix unfolding has rank at most
1, j ¼ 1; : : : ; n− 1. Hence, all distinct 2× 2minors of the mode-jmatrix unfolding of ̲Y
should be equal to zero for j ¼ 1; : : : ; n− 1. This can be written as

Uðn−1Þ
j

~d ¼ m

�
⨀
n−1

i≠j
AðiÞ

�
⊙ mðAðjÞÞ ~d ¼ 0; j ¼ 1; : : : ; n− 1;ð4:5Þ

where ~d ¼ ðd1d2; d1d3; : : : ; dR−1dRÞT , and mð·Þ is defined as follows.
DEFINITION 4.2. For an I × R matrix A, let the I ðI − 1Þ ∕ 2× RðR− 1Þ ∕ 2 matrix

mðAÞ have entries

det

�
aig aih
ajg ajh

�
with 1 ≤ i < j ≤ I and 1 ≤ g < h ≤ R;ð4:6Þ

where in each row of mðAÞ the value of ði; jÞ is fixed and in each column of mðAÞ the
value of ðg; hÞ is fixed. The columns of mðAÞ are ordered such that index g runs slower
than h. The rows of mðAÞ are ordered such that index i runs slower than j. ▯

By defining

Uðn−1Þ ¼

2
664
Uðn−1Þ

1

..

.

Uðn−1Þ
n−1

3
775;ð4:7Þ
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the following equivalent of Theorem 4.1 is obtained. For n ¼ 3, this result is due to Jiang
and Sidiropoulos [18].

THEOREM 4.3. Let ðAð1Þ; : : : ;AðnÞÞ, n ≥ 3, be a decomposition with rankðAðnÞÞ ¼ R.
Then the decomposition is unique up to permutation and scaling if and only if, for any
vector d ∈ RR,

Uðn−1Þ ~d ¼ 0 implies ωðdÞ ≤ 1;ð4:8Þ

where ~d ¼ ðd1d2; d1d3; : : : ; dR−1dRÞT . ▯
From the form of ~d it can be seen that ~d ¼ 0 implies ωðdÞ ≤ 1. Hence, Uðn−1Þ having

full column rank is sufficient for condition (4.8) to hold.
COROLLARY 4.4. Let ðAð1Þ; : : : ;AðnÞÞ, n ≥ 3, be a decomposition with

rankðAðnÞÞ ¼ R. Then the decomposition is unique up to permutation and scaling if
Uðn−1Þ has full column rank. ▯

Contrary to (4.3), the condition of Uðn−1Þ having full column rank is easy to check.
Corollary 4.4 was proven independently for n ¼ 3 and n ¼ 4 by De Lathauwer [7].

4.2. Decompositions with some form of symmetry. Here, we consider unique-
ness conditions for a decomposition ðAð1Þ; : : : ;AðnÞÞ with some form of symmetry and
rankðAðnÞÞ ¼ R. If n ∈ E, then at least one other component matrix has rank R as well.
Condition (1.3) implies uniqueness when the sum of the other n− 2 k-ranks equals at
least n− 1 (and no k-rank equals zero). This condition is very mild. In the following we
assume n ∈= E. For n ∈ E, we refer to condition (1.3).

Before we prove uniqueness conditions, we consider the type of alternative de-
compositions that are possible. Theorem 4.5 below states that, up to scaling indetermi-
nacies, any alternative decomposition will feature the same form of symmetry when
ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ has full column rank R. For n ¼ 3 and Að1Þ ¼ Að2Þ, Theorem 4.5
complements the results of Ten Berge, Sidiropoulose, and Rocci [44] and Ten Berge,
Stegeman, and Dosse [45]. When ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ has rank less than R, nonunique-
ness follows from Lemma 3.3.

THEOREM 4.5. Let ðAð1Þ; : : : ;AðnÞÞ be a decomposition with some form of symmetry,
n ≥ 3. Let rankðAðnÞÞ ¼ R and n ∈= E. If rankðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ ¼ R, then any alter-
native decomposition ðBð1Þ; : : : ;BðnÞÞ satisfies BðiÞ ¼ BðjÞΛðijÞ if AðiÞ ¼ AðjÞ for 1 ≤ i,
j ≤ n− 1, with ΛðijÞ being a nonsingular diagonal matrix.

Proof. As in section 4.1, we assume without loss of generality that AðnÞ ¼ IR (and
I n ¼ R). We focus on (4.2) in which BðnÞ is nonsingular and ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ has
full column rank. Let d be an arbitrary column of ðBðnÞÞ−T , and let ðf1 ⊗ · · ·⊗ fn−1Þ
be an arbitrary column of ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ. We reshape the equation ðAð1Þ ⊙ · · ·⊙
Aðn−1ÞÞd ¼ ðf1 ⊗ · · ·⊗ fn−1Þ in (n− 1)th order tensor form as

̲Y ¼
XR
r¼1

drðað1Þr ∘ · · · ∘ aðn−1Þ
r Þ ¼ ðf1 ∘ · · · ∘ fn−1Þ:ð4:9Þ

Full column rank of ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ guarantees that ̲Y is not all-zero unless d ¼ 0.
The latter is impossible since d is a column of the nonsingular ðBðnÞÞ−T . Since ̲Y is not
all-zero, none of the fj are all-zero. Moreover, the rank-1 tensor on the right-hand side of
(4.9) should have the same form of symmetry as ̲Y.

Let Eq ¼ fj1; : : : ; jkg; i.e., Aðj1Þ ¼ · · ·¼ AðjkÞ. Then (4.9) implies that the kth order
rank-1 tensor ðfj1 ∘ · · · ∘ fjkÞ is symmetric in all k modes. Since all fj ≠ 0, it follows that
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fj1 ; : : : ; fjk are proportional. The latter are column c of Bðj1Þ; : : : ;BðjkÞ with c arbitrary.
This completes the proof. ▯

The alternative decompositions in Theorem 4.5 can be rescaled to feature the same
form of symmetry as the original decomposition (i.e., BðiÞ ¼ BðjÞ ifAðiÞ ¼ AðjÞ). This can
be done by incorporating all the ΛðijÞ (containing the constants of proportionality) in
matrix BðnÞ.

In Theorem 4.6 below, we prove the symmetric analogue of the necessary and suffi-
cient uniqueness condition in Theorem 4.1. Considering the result of Theorem 4.5, it
may not be surprising that, without loss of generality, we may take fi ¼ fj if
AðiÞ ¼ AðjÞ in condition (4.3).

THEOREM 4.6. Let ðAð1Þ; : : : ;AðnÞÞ be a decomposition with some form of symmetry,
n ≥ 3. Let rankðAðnÞÞ ¼ R and n ∈= E. Then the decomposition is unique up to permuta-
tion and scaling if and only if, for any vector d ∈ RR,

ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞd ¼ ðf1 ⊗ · · ·⊗ fn−1Þ implies ωðdÞ ≤ 1;ð4:10Þ

where fi ¼ fj if AðiÞ ¼ AðjÞ, 1 ≤ i, j ≤ n− 1.
Proof. First, we prove that (4.10) is a sufficient condition for uniqueness. Condition

(4.10) implies full column rank of ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ. Indeed, rank deficiency implies
that either ωðdÞ ≥ 2 and f1 ¼ 0 is possible or that ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ has an all-zero
column, which makes ωðdÞ ¼ 2 possible. As in the proof of Theorem 4.5, we focus on
(4.2). Condition (4.10) implies that each column of ðBðnÞÞ−T contains at most one non-
zero entry. Since BðnÞ is nonsingular, each column has exactly one nonzero entry. More-
over, ðBðnÞÞ−T ¼ ΠΛ−1

n , where Π is a permutation matrix, and Λn is a nonsingular
diagonal matrix. Hence, we have BðnÞ ¼ ΠΛn, and it follows that

ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ ¼ ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞΠΛ−1
n ¼ ðAð1ÞΠ ⊙ · · ·⊙ Aðn−1ÞΠÞΛ−1

n :

ð4:11Þ

Hence, each column of ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞ is a rescaled column of ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ.
Each such column r can be interpreted as a vectorized (n− 1)th order tensor that is the
outer product of bð1Þ

r ; : : : ;bðn−1Þ
r . Rewriting one column in this form yields

bð1Þ
r ∘ · · · ∘ bðn−1Þ

r ¼ λðað1Þq ∘ · · · ∘ aðn−1Þ
q Þ;ð4:12Þ

where, for fixed r, the value of q is given by the permutation Π, and λ ≠ 0 is the corre-
sponding diagonal entry of Λ−1

n . Since none of the columns in (4.12) is all-zero, it follows
that bðjÞ

r is proportional to aðjÞq for j ¼ 1; : : : ; n− 1. This implies BðjÞ ¼ AðjÞΠΛj,
j ¼ 1; : : : ; n− 1, for nonsingular diagonal matrices Λj. Since ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ
has full column rank, (4.11) implies that

Q
n−1
j¼1 Λj ¼ Λ−1

n . Hence, the decomposition
ðAð1Þ; : : : ;AðnÞÞ is unique up to permutation and scaling. This shows the sufficiency
of condition (4.10). Note that the signs of the diagonal entries of Λn are required to
accommodate the form of symmetry in the decomposition. For example, if n ¼ 3
and Að1Þ ¼ Að2Þ, then (4.12) implies λ > 0.

Next, we prove necessity of (4.10) analogous to the proof of Stegeman [38,
Theorem 4.2]. As in section 4.1, we set AðnÞ ¼ IR without loss of generality. Suppose
ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞd ¼ ðf1 ⊗ · · ·⊗ fn−1Þ for some vector d with ωðdÞ ≥ 2 and
fi ¼ fj if AðiÞ ¼ AðjÞ. Let dp ≠ 0, and set BðjÞ equal to AðjÞ with column p replaced
by fj, j ¼ 1; : : : ; n− 1. Then ðað1Þp ⊗ · · ·⊗ aðn−1Þ

p Þ ¼ ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞg for some vec-
tor g with ωðgÞ ≥ 2. Let BðnÞ be equal to IR with row p replaced by gT . We have
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ðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ ¼ ðBð1Þ ⊙ · · ·⊙ Bðn−1ÞÞðBðnÞÞT :ð4:13Þ
Moreover, if AðiÞ ¼ AðjÞ, then BðiÞ ¼ BðjÞ for 1 ≤ i, j ≤ n− 1. Together with n ∈= E, this
shows that ðBð1Þ; : : : ;BðnÞÞ is an alternative decomposition featuring the same form of
symmetry as ðAð1Þ; : : : ;Aðn−1Þ; IRÞ. Since the BðjÞ are not rescaled column permutations
of the AðjÞ, the nonuniqueness of the decomposition follows. ▯

When comparing conditions (4.3) and (4.10) for a decomposition featuring some
form of symmetry, the following can be observed. By the logical forms of the conditions,
it is clear that (4.3) implies (4.10). If (4.3) does not hold, then a nonequivalent alter-
native decomposition exists. By Theorem 4.5, this alternative decomposition features
the same form of symmetry as the original decomposition. Hence, we have nonunique-
ness which also implies that (4.10) does not hold. This yields the following corollary.

COROLLARY 4.7. Let ðAð1Þ; : : : ;AðnÞÞ be a decomposition with some form of symme-
try, n ≥ 3. Let rankðAðnÞÞ ¼ R and n ∈= E. Then condition (4.3) holds if and only if con-
dition (4.10) holds. ▯

Since Uðn−1Þ having full column rank implies condition (4.8), which is equivalent to
condition (4.3) by Theorem 4.3, we obtain the following analogue of Corollary 4.4.

COROLLARY 4.8. Let ðAð1Þ; : : : ;AðnÞÞ be a decomposition with some form of symme-
try, n ≥ 3. Let rankðAðnÞÞ ¼ R and n ∈= E. Then the decomposition is unique up to per-
mutation and scaling if the matrix Uðn−1Þ has full column rank. ▯

5. Generic uniqueness conditions for the case rank�A�n�� � R. Here, we con-
sider the matrix Uðn−1Þ when Að1Þ; : : : ;Aðn−1Þ are generic. In [38] bounds on R are ob-
tained in terms of I 1; : : : ; I n−1 such thatUðn−1Þ has full column rank under these bounds.
In view of Corollary 4.4, these are called generic uniqueness conditions. In section 5.1, we
give an overview of these conditions as proven in [38] for the asymmetric case. In sec-
tion 5.2, we present generic uniqueness bounds for n ¼ 3, 4, 5 and several forms of sym-
metry. Also, we compare the bounds under symmetry to the bounds for the asymmetric
case.

5.1. Asymmetric decompositions. Each row of Uðn−1Þ in (4.7) corresponds to a
2× 2 minor of a matrix unfolding of the (n− 1)th order tensor ̲Y with decomposition

̲Y ¼
XR
r¼1

drðað1Þr ∘ · · · ∘ aðn−1Þ
r Þ:ð5:1Þ

According to condition (4.4), the tensor ̲Y needs to have rank at most 1. This is guar-
anteed when all 2× 2 minors of all its matrix unfoldings are zero. However, checking all
distinct 2× 2 minors of all matrix unfoldings of ̲Y is not needed. Some 2× 2 minors are
redundant regardless of the entries of ̲Y or the sizes of I 1; : : : ; I n−1 and R. Since each
2× 2 minor corresponds to a row in Uðn−1Þ, a redundant minor corresponds to a redun-
dant row of Uðn−1Þ. When these redundant rows are deleted from Uðn−1Þ, then it has full
column rank if it is square or vertical, and Að1Þ; : : : ;Aðn−1Þ are generic. For n ¼ 3 and
n ¼ 4 this was shown by De Lathauwer [7]. The following generalization to arbitrary
n ≥ 3 is due to Stegeman [38]. Let the numbers Qðm;nÞ be given by

Qðm;nÞ ¼
X
Sm

Y
j∈Sm

I jðI j − 1Þ
2

Y
j∈=Sm

I j;ð5:2Þ

where the summation is over all subsets Sm of f1; : : : ; n− 1g containing m distinct ele-
ments. If m ¼ n− 1, then we set

Q
j∈=Sm

I j ¼ 1.
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THEOREM 5.1. Let ðAð1Þ; : : : ;AðnÞÞ, n ≥ 3, be a decomposition with generic
ðAð1Þ; : : : ;Aðn−1ÞÞ and rankðAðnÞÞ ¼ R. Then Uðn−1Þ has full column rank if

RðR− 1Þ
2

≤
Xn−1

m¼2

ð2m−1 − 1ÞQðm;nÞ:ð5:3Þ

Hence, the decomposition is unique up to permutation and scaling if (5.3) holds. ▯
The matrix Uðn−1Þ has RðR− 1Þ ∕ 2 columns. The right-hand side of (5.3) represents

its number of nonredundant rows.

5.2. Decompositions with some form of symmetry. In this section, we pre-
sent generic uniqueness bounds for n ¼ 3, 4, 5 and several forms of symmetry. The sym-
metry in the decomposition ðAð1Þ; : : : ;Aðn−1ÞÞ is of the same form as the symmetry in ̲Y
in (5.1). As in [38], the number of nonredundant rows of Uðn−1Þ is determined as follows.
Each row of Uðn−1Þ corresponds to a 2× 2 minor of a matrix unfolding of ̲Y. A 2× 2
minor of a matrix unfolding of ̲Y corresponds to an equation yAyD ¼ yByC, where
A, B, C, D contain n− 1 indices. Since we do not know which entries of ̲Y are nonzero,
redundant minors can only be identified by determining identical terms in the equations
of the minors. Here, a term is the product of two entries of ̲Y, as in yAyD.

In this way, we are able to determine the number of nonredundant rows of Uðn−1Þ.
When the latter equalsK , the generic uniqueness bound is of the form RðR− 1Þ ∕ 2 ≤ K ,
since Uðn−1Þ has RðR− 1Þ∕ 2 columns. Let

ΦðI Þ ¼ I ðI − 1Þ
4

�
I ðI − 1Þ

2
þ 1

�
−
�
I
4

�
;ð5:4Þ

ΨðI Þ ¼ 2ΦðI Þ þ
�
I
4

�
; ΩðI Þ ¼ 4ΦðI Þ þ 3

�
I
4

�
;ð5:5Þ

ΔðI ; JÞ ¼ 2

�
ΦðI Þ þ

�
I
4

���
ΦðJÞ þ

�
J
4

��
−
�
I
4

��
J
4

�
;ð5:6Þ

where the terms ðx4Þ appear only if x ≥ 4. Our results are the following analogues of
Theorem 5.1. Theorem 5.2 below concerns the case n ¼ 3 and Að1Þ ¼ Að2Þ, and it
was conjectured and partly proven in Stegeman, Ten Berge, and De Lathauwer [40].
As discussed in section 1, there are a lot of applications using this decomposition. The-
orems 5.3 and 5.4 are generalizations to n ¼ 4 and n ¼ 5, respectively. Theorem 5.5 is a
special case of Theorem 5.4 in which there is symmetry in modes 1 and 2, but also in
modes 3 and 4. This concerns the third order decomposition combined with ICA (re-
sulting in a fifth order decomposition) of De Vos et al. [12]. The proofs of the theorems
below can be found in the appendices.

THEOREM 5.2. Let ðAð1Þ;Að1Þ;Að3ÞÞ be a decomposition with generic Að1Þ and
rankðAð3ÞÞ ¼ R. Then Uð2Þ has full column rank if

RðR− 1Þ
2

≤ ΦðI 1Þ:ð5:7Þ

Hence, the decomposition is unique up to permutation and scaling if (5.7) holds. ▯
THEOREM 5.3. Let ðAð1Þ;Að1Þ;Að3Þ;Að4ÞÞ be a decomposition with generic ðAð1Þ;Að3ÞÞ

and rankðAð4ÞÞ ¼ R. Then Uð3Þ has full column rank if
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RðR− 1Þ
2

≤ I 3ΦðI 1Þ þ
I 3ðI 3 − 1Þ

2

�
I 21ðI 1 − 1Þ

2
þ ΨðI 1Þ

�
:ð5:8Þ

Hence, the decomposition is unique up to permutation and scaling if (5.8) holds. ▯
THEOREM 5.4. Let ðAð1Þ;Að1Þ;Að3Þ;Að4Þ;Að5ÞÞ be a decomposition with generic

ðAð1Þ;Að3Þ;Að4ÞÞ and rankðAð5ÞÞ ¼ R. Then Uð4Þ has full column rank if

RðR− 1Þ
2

≤ I 3I 4ΦðI 1Þ þ
�
I 3

I 4ðI 4 − 1Þ
2

þ I 4
I 3ðI 3 − 1Þ

2

��
I 21ðI 1 − 1Þ

2
þΨðI 1Þ

�

þ I 3ðI 3 − 1Þ
2

I 4ðI 4 − 1Þ
2

�
I 1ðI 1 þ 1Þ

2
þ 3I 21ðI 1 − 1Þ

2
þ ΩðI 1Þ

�
:ð5:9Þ

Hence, the decomposition is unique up to permutation and scaling if (5.9) holds. ▯
THEOREM 5.5. Let ðAð1Þ;Að1Þ;Að3Þ;Að3Þ;Að5ÞÞ be a decomposition with generic

ðAð1Þ;Að3ÞÞ and rankðAð5ÞÞ ¼ R. Then Uð4Þ has full column rank if

RðR− 1Þ
2

≤
I 1ðI 1 þ 1Þ

2
ΦðI 3Þ þ

I 3ðI 3 þ 1Þ
2

ΦðI 1Þ þ
I 21ðI 1 − 1Þ

2

I 23ðI 3 − 1Þ
2

þ I 21ðI 1 − 1Þ
2

ΨðI 3Þ þ
I 23ðI 3 − 1Þ

2
ΨðI 1Þ þ ΔðI 1; I 3Þ:ð5:10Þ

Hence, the decomposition is unique up to permutation and scaling if (5.10) holds. ▯
Below, we compare the generic uniqueness bounds (5.7)–(5.10) to their asymmetric

counterpart (5.3). For several cases, we compute the largest R that satisfies the bound.
Also, we compute the largest R satisfying the generalization (1.3) of Kruskal’s unique-
ness condition (with kAðnÞ ¼ R and kAðjÞ ¼ minðI j; RÞ ¼ I j, j ≤ n− 1). The results can
be found in Table 1. As also observed in Stegeman [38], the bound (5.3) is a large im-
provement with respect to the bound obtained from (1.3). The most striking observation
is done when comparing (5.3) to (5.7)–(5.10): the bounds on R are much lower in the
presence of symmetry.

This is in line with the fact that the generic or typical rank of a tensor is lower when
it has a form of symmetry; see Ten Berge, Sidiropoulos, and Rocci [44] and Comon et al.
[5]. Uniqueness occurs for values of R lower than the generic or typical rank. For the
cases in Table 1, typical rank results are known only for n ¼ 3. Using the algorithm of
[5], it can be verified that for asymmetric 4× 4× I 3 tensors, the typical rank values
increase from 8 to 16 when I 3 increases from 6 to 16 (for I 3 > 16 the typical rank is
16). The asymmetric generic uniqueness bound (5.3) is R ≤ 9. For 4× 4× I 3 tensors
with symmetry in the first two modes, the typical rank values increase from 7 to 10

TABLE 1
Comparison of uniqueness bounds on R for generic decompositions ðAð1Þ; : : : ;AðnÞÞ with rankðAðnÞÞ ¼ R,

both without (columns 3 and 4) and with some form of symmetry (column 5).

n Size tensor
Bound on R
from (1.3)

Bound on R
from (5.3)

Bound on R
with symmetry

n ¼ 3 4× 4× I 3, I 3 ≥ R R ≤ 6 R ≤ 9 R ≤ 6 (Að1Þ ¼ Að2Þ)
n ¼ 4 4× 4× 4× I 4, I 4 ≥ R R ≤ 9 R ≤ 46 R ≤ 31 (Að1Þ ¼ Að2Þ)
n ¼ 5 4× 4× 4× 4× I 5, I 5 ≥ R R ≤ 12 R ≤ 214 R ≤ 137 (Að1Þ ¼ Að2Þ)
n ¼ 5 4× 4× 4× 4× I 5, I 5 ≥ R R ≤ 12 R ≤ 214 R ≤ 87 (Að1Þ ¼ Að2Þ

and Að3Þ ¼ Að4Þ)
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when I 3 increases from 6 to 10 (for I 3 > 10 the typical rank is 10), while the generic
uniqueness bound (5.7) is R ≤ 6.

6. Examples for n � 3 and A�1� � A�2�. Here, we illustrate the results in sec-
tions 4 and 5 for the case n ¼ 3 by means of several examples. We denote A ¼ Að1Þ ¼
Að2Þ and set Að3Þ ¼ IR without loss of generality.

Example 6.1. Let R ¼ 3 and

A ¼
�
1 0 1
0 1 2

�
; ðA ⊙ AÞ ¼

2
6664
1 0 1
0 0 2
0 0 2
0 1 4

3
7775:ð6:1Þ

Then ðA ⊙ AÞd ¼ f ⊗ f with f ¼ ð2; 2ÞT and d ¼ ð2;−4; 2ÞT . Hence, condition (4.10)
does not hold, and the decomposition ðA;A; I3Þ is not unique. Since ðA ⊙ AÞ has full
column rank, Theorem 4.5 implies that any alternative decomposition ðĀ; B̄; C̄Þ satisfies
B̄ ¼ ĀΛ for some nonsingular diagonal matrix Λ. ▯

Example 6.2. Let R ¼ 4 and

A ¼
2
4 1 0 0 1
0 1 0 1
0 0 1 1

3
5:ð6:2Þ

It can be verified that ðA ⊙ AÞd ¼ f ⊗ f yields the equations

dj þ d4 ¼ f 2j ; j ¼ 1; 2; 3; d4 ¼ f 1f 2 ¼ f 1f 3 ¼ f 2f 3:ð6:3Þ

When f contains no zeros, it follows that f 1 ¼ f 2 ¼ f 3 and d1 ¼ d2 ¼ d3 ¼ 0. When
f 1 ¼ 0, we get d4 ¼ f 2f 3 ¼ 0 and d1 ¼ 0. Hence, either f 2 ¼ 0 (implying d2 ¼ 0) or
f 3 ¼ 0 (implying d3 ¼ 0), and ωðdÞ ≤ 1 follows. When starting with f 2 ¼ 0 or
f 3 ¼ 0, the same result is obtained. This shows that condition (4.10) holds, which im-
plies uniqueness of ðA;A; I4Þ. When the matrix Uð2Þ is computed, it can be verified that
it has rank RðR− 1Þ ∕ 2 ¼ 6. Note that the right-hand side of (5.7) equals Φð3Þ ¼ 6.
Hence, after deleting redundant rows, Uð2Þ is a 6× 6 matrix. ▯

Example 6.3. In this example we show that Uð2Þ having full column rank is not ne-
cessary for uniqueness. In Stegeman [37] this was shown for the asymmetric case. The
smallest R for which we have found such an example is R ¼ 7. Let

A ¼

2
6664
1 0 0 0 1 1 1
0 1 0 0 1 2 4
0 0 1 0 1 1 2
0 0 0 1 1 2 1

3
7775:ð6:4Þ

The right-hand side of (5.7) equals Φð4Þ ¼ 20. Hence, after deleting redundant rows,
Uð2Þ has 20 rows left. Since it has RðR− 1Þ ∕ 2 ¼ 21 columns, it cannot have full column
rank. Next, we show that condition (4.10) holds, which implies uniqueness of ðA;A; I7Þ.
It can be verified that ðA ⊙ AÞd ¼ f ⊗ f yields the equations
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d1 þ d5 þ d6 þ d7 ¼ f 21; d5 þ 2d6 þ 8d7 ¼ f 2f 3;

d5 þ 2d6 þ 4d7 ¼ f 1f 2; d5 þ 4d6 þ 4d7 ¼ f 2f 4;

d5 þ d6 þ 2d7 ¼ f 1f 3; d3 þ d5 þ d6 þ 4d7 ¼ f 23;

d5 þ 2d6 þ d7 ¼ f 1f 4; d5 þ 2d6 þ 2d7 ¼ f 3f 4;

d2 þ d5 þ 4d6 þ 16d7 ¼ f 22; d4 þ d5 þ 4d6 þ d7 ¼ f 24:

Rewriting ðf 1f 2Þðf 3f 4Þ ¼ ðf 1f 3Þðf 2f 4Þ yields d5d6 ¼ 0. Rewriting ðf 1f 2Þðf 3f 4Þ ¼
ðf 1f 4Þðf 2f 3Þ yields 3d5d7 þ 6d6d7 ¼ 0. Together, this implies that at most one of d5,
d6, d7 can be nonzero. Let d5 ≠ 0 and d6 ¼ d7 ¼ 0. The equations above imply that
f 1 ¼ f 2 ¼ f 3 ¼ f 4 ≠ 0, d5 ¼ f 21, and d1 ¼ d2 ¼ d3 ¼ d4 ¼ 0. Next, let d6 ≠ 0 and
f 5 ¼ f 7 ¼ 0. Then we obtain f 1 ¼ f 3, f 2 ¼ f 4 ¼ 2f 1, d6 ¼ f 21, and d1 ¼ d2 ¼
d3 ¼ d4 ¼ 0. Analogously, if d7 ≠ 0 and d5 ¼ d6 ¼ 0, then f 1 ¼ f 4, f 2 ¼ 4f 1,
f 3 ¼ 2f 1, d7 ¼ f 21, and d1 ¼ d2 ¼ d3 ¼ d4 ¼ 0. Next, suppose d1 ≠ 0. From the above
it follows that d5 ¼ d6 ¼ d7 ¼ 0. This implies d1 ¼ f 21 ≠ 0, f 2 ¼ f 3 ¼ f 4 ¼ 0, and
d2 ¼ d3 ¼ d4 ¼ 0. The cases d2 ≠ 0, d3 ≠ 0, d4 ≠ 0 can be treated in the same way. This
shows that ωðdÞ ≤ 1. Hence, condition (4.10) holds. ▯

7. Discussion. In this paper, we have proven necessary, sufficient, necessary and
sufficient, and generic uniqueness conditions for nth order tensor decompositions with
some form of symmetry. The analogues for the asymmetric case can be found in Stege-
man [38]. When comparing the symmetric and asymmetric cases, the following can be
observed. The necessary condition concerning proportional columns (Lemma 3.2) car-
ries over to the symmetric case, although requiring a more complicated proof. The ne-
cessary condition rankð⨀n

i≠j A
ðiÞÞ ¼ R could be proven for the symmetric case only if

mode j is not included in the symmetry. The remaining case is still an open question. If
rankðAðnÞÞ ¼ R and rankðAð1Þ ⊙ · · ·⊙ Aðn−1ÞÞ ¼ R, then alternative decompositions ne-
cessarily feature the same form of symmetry as the original decomposition (see Theo-
rem 4.5). This fact yields natural analogues of the uniqueness conditions in Theorems 4.1
and 4.3 and Corollary 4.4 (see section 4.2). The most striking difference between the
symmetric and asymmetric case occurs in the generic uniqueness bounds on
RðR− 1Þ ∕ 2 presented in section 5. In the presence of symmetry, these bounds are much
lower than in the asymmetric case.

As mentioned in section 1, decompositions with some form of symmetry mostly oc-
cur in signal processing. For complex-valued decompositions the symmetry often takes
the form of one component matrix being equal to the complex conjugate of another.
Since we consider only the real-valued case, uniqueness of such decompositions is
not directly covered by our results. However, analogous to [38], our results can be trans-
lated easily to the complex case. To do this, we must keep in mind that our vectors live in
a complex vector space Cm with inner product hx; yi ¼ yHx and norm jjxjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffihx;xip

,
where H denotes the Hermitian or conjugated transpose. As in Rm, vectors x and y are
orthogonal when hx; yi ¼ 0. Also, vectors x1; : : : ;xq ∈ Cm are linearly independent
when a1x1þ · · · þaqxq ¼ 0 implies a1 ¼ · · ·¼ aq ¼ 0 for scalars a1; : : : ; aq ∈ C. More-
over, the determinant of a complex matrix is defined identical to the determinant of a
real matrix, and its relation to the matrix rank is identical. The considerations above
imply that, in order to translate our uniqueness proofs to the complex case, we must
replace the ordinary transpose T by H where orthogonality is involved. However, in cases
where the transpose is due to the formulation of the decomposition such as in (2.1), the
transpose should not be changed. See also [18], where all uniqueness results (for the
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asymmetric decomposition with n ¼ 3) are proven for the complex case. A translation of
our results to the complex case is as follows. Lemmas 3.3 and 3.4 also hold for the com-
plex case. Note that in (3.4) we don’t have to worry about the term under the square root
being positive. The results in section 4.2 also hold for the complex case. In Theorem 4.6
we may take fi equal to the complex conjugate of fj if this holds for AðiÞ and AðjÞ. The
results of section 5.2 are obtained by identifying minors with identical terms. This meth-
od yields the same results in the complex case. Hence, after translating, the results in this
paper can be applied to complex-valued decompositions as well.

Appendix A. Proof of Theorem 5.2. Here, ̲Y is an I 1 × I 1 symmetric matrix Y.
The n− 1 ¼ 2matrix unfoldings of Y are Y itself and YT , which are identical. Hence, we
need to consider only the 2× 2 minors of Y. We denote the equation of a minor as
yijypq ¼ yiqypj, where we refer to yijypq as its first term and to yiqypj as its second term.
For convenience, we use the notation ði; j; p; qÞ for the minor as well. Without loss of
generality, we assume i < p and j < q. This yields I 21ðI 1 − 1Þ2 ∕ 4minors to start with. In
the asymmetric case, all these minors are nonredundant. With symmetry present, we
proceed as follows.

As stated in section 5.2, we identify minors with identical terms. Since Y is sym-
metric, we have yij ¼ yji. First, we consider minors with an identical term due to swap-
ping indices in both y of that term. Suppose ði1; j1; p1; q1Þ and ði2; j2; p2; q2Þ are two such
minors. They have identical first terms due to swapping indices in both y if either
ði1; j1Þ ¼ ðj2; i2Þ and ðp1; q1Þ ¼ ðq2; p2Þ, or ði1; j1Þ ¼ ðq2; p2Þ and ðp1; q1Þ ¼ ðj2; i2Þ. In
the latter case we have i1 ¼ q2 > j2 ¼ p1 which contradicts i1 < p1. Hence, we assume
the former case holds. Since ði1; q1Þ ¼ ðj2; p2Þ and ðp1; j1Þ ¼ ðq2; i2Þ, the symmetry also
implies that their second terms are identical. Analogously, identical second terms due to
swapping indices in both y implies identical first terms. Next, suppose the first term of
ði1; j1; p1; q1Þ is identical to the second term of ði2; j2; p2; q2Þ due to swapping indices in
both y. Again there are two possibilities. Either ði1; j1Þ ¼ ðq2; i2Þ and ðp1; q1Þ ¼ ðj2; p2Þ,
or ði1; j1Þ ¼ ðj2; p2Þ and ðp1; q1Þ ¼ ðq2; i2Þ. In the former case we have i1 ¼ q2 > j2 ¼ p1
which contradicts i1 < p1. In the latter case we have j1 ¼ p2 > i2 ¼ q1 which contradicts
j1 < q1. Hence, both cases are impossible. Therefore, having identical terms due to swap-
ping indices in both y implies having completely identical minors. These identical minors
are excluded by adding the following constraint on ði; j; p; qÞ:

ði; pÞ ≼ ðj; qÞ ⇔ either i < j or ði ¼ j& p ≤ qÞ:ðA:1Þ

The number of minors we are left with equals

1

2

I 1ðI 1 − 1Þ
2

�
I 1ðI 1 − 1Þ

2
þ 1

�
:ðA:2Þ

Next, we consider minors ði1; j1; p1; q1Þ and ði2; j2; p2; q2Þ with an identical term due to
swapping the indices of only one y in that term. When their first terms are identical, we
have four possibilities:

ði1; j1Þ ¼ ði2; j2Þ and ðp1; q1Þ ¼ ðq2; p2Þ; orðA:3Þ
ði1; j1Þ ¼ ðj2; i2Þ and ðp1; q1Þ ¼ ðp2; q2Þ; orðA:4Þ
ði1; j1Þ ¼ ðp2; q2Þ and ðp1; q1Þ ¼ ðj2; i2Þ; orðA:5Þ

ði1; j1Þ ¼ ðq2; p2Þ and ðp1; q1Þ ¼ ði2; j2Þ:ðA:6Þ
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In (A.5) we have i1 ¼ p2 > i2 ¼ q1 and i1 < p1 ¼ j2 < q2 ¼ j1 < q1 which contradict
each other. In (A.6) we have j1 ¼ p2 > i2 ¼ p1 and j1 < q1 ¼ j2 < q2 ¼ i1 < p1 which
contradict each other. In (A.4) we have ði1; p1Þ ≼ ðj1; q1Þ and ðj1; p1Þ ≼ ði1; q1Þ, which
implies i1 ¼ j1 ¼ i2 ¼ j2. Hence, we have only one minor instead of two. In (A.3) we
have ði1; p1Þ ≼ ðj1; q1Þ and ði1; q1Þ ≼ ðj1; p1Þ, which implies p1 ≠ q1 and i1 < j1 in order
to have two minors. Hence, (A.3) is possible for

i1 < j1 < p1 < q1 or i1 < j1 < q1 < p1:ðA:7Þ

Analogously, it can be shown that the two minors have identical second terms due
to swapping indices in one y only if ði1; q1Þ ¼ ði2; q2Þ and ðp1; j1Þ ¼ ðj2; p2Þ, which
implies

i1 < j1 < p1 < q1 or i1 < p1 < j1 < q1:ðA:8Þ

Also, we obtain that the first term of ði1; j1; p1; q1Þ is identical to the second term of
ði2; j2; p2; q2Þ due to swapping indices in one y only if ði1; j1Þ ¼ ði2; q2Þ and ðp1; q1Þ ¼
ðj2; p2Þ, which implies i1 < p1 < j1 < q1. Together with (A.7) and (A.8), this implies
that for i < j < p < q the following holds:

• Minor ði; j; p; qÞ has second term identical to second term of minor ði; p; j; qÞ.
• Minor ði; p; j; qÞ has first term identical to second term of minor ði; j; q; pÞ.
• Minor ði; j; q; pÞ has first term identical to first term of minor ði; j; p; qÞ.

Hence, each i < j < p < q identifies three minors of which one is redundant. The num-
ber of subsets ði; j; p; qÞ with i < j < p < q equals ðI 14 Þ, which is equal to the number of
redundant minors due to identical terms by swapping indices of one y only. Therefore,
the total number of nonredundant minors equals (A.2) minus ðI 14 Þ, which is exactly
ΦðI 1Þ. This completes the proof.

Appendix B. Proof of Theorem 5.3. Here, ̲Y is an I 1 × I 1 × I 3 tensor with
symmetry in the first two modes. We denote the I 1 × I 1 symmetric frontal slices of
̲Y as Y1; : : : ;YI 3 . The first and second matrix unfoldings are given by ½Y1j : : : jYI 3 �

and ½YT
1 j : : : jYT

I 3
�, respectively. Hence, they are identical. The entries of ̲Y have three

indices. A minor of a matrix unfolding of ̲Y corresponds to an equation yAyD ¼
yByC, where A, B, C, D contain three indices. Let difðA;DÞ denote the number of dif-
ferent indices in A and D (i.e., indices with different values at the same position). We
have difðA;DÞ ∈ f2; 3g. We refer to this number as the order of the minor. Hence, a
minor can have order 2 or 3, where a minor of order 2 has one fixed index. An order
2 minor with fixed third index is a 2× 2 minor of a slice Yk and corresponds to an equa-
tion yijkypqk ¼ yiqkypjk. From the proof of Theorem 5.2, it follows that of such minors
there are

I 3ΦðI 1ÞðB:1Þ

nonredundant. Indeed, there are I 3 symmetric frontal slices, and each slice has ΦðI 1Þ
nonredundant minors. By symmetry, the minors of order 2 with fixed first index are
identical to the minors of order 2 with fixed second index. These correspond to
yijkyiqr ¼ yijryiqk, where we set j < q and k < r without loss of generality. Since the
third indices k and r are distinct, these minors do not share terms with the order 2 min-
ors having fixed third index. It follows that there are
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I 1
I 1ðI 1 − 1Þ

2

I 3ðI 3 − 1Þ
2

ðB:2Þ

nonredundant minors of order 2 with first (or second) index fixed. Next, we consider
minors of order 3. As observed in [38], each such minor corresponds to a 2× 2× 2 sub-
tensor of ̲Y with frontal slices

�
yijk yiqk
ypjk ypqk

�
and

�
yijr yiqr
ypjr ypqr

�
;ðB:3Þ

where we set i < p, j < q, k < r without loss of generality. By symmetry, swapping i and
j, and p and q, yields an identical subtensor. Hence, we add the constraint ði; pÞ ≼ ðj; qÞ.
Analogous to (A.2), this yields a total number of subtensors equal to

I 3ðI 3 − 1Þ
2

I 1ðI 1 − 1Þ
4

�
I 1ðI 1 − 1Þ

2
þ 1

�
:ðB:4Þ

It is shown in [38, section 5.2] that, in absence of symmetry, each subtensor corresponds
to six distinct minors of order 3 that equate four distinct terms. Only three of the six
minors are nonredundant. These can be written as

yijkypqr ¼ ypjkyiqr ¼ yiqkypjr ¼ yijrypqk:ðB:5Þ

In the asymmetric case, [38] shows that minors corresponding to different subtensors do
not have identical terms. Moreover, minors of different orders do not have identical
terms. In the current symmetric case, this is not true.

A subtensor ði; j; k; p; q; rÞ with i, j, p, q distinct does not share terms with a minor
of order 2, since the terms do not have fixed indices. Next, suppose i, j, p, q are not
distinct. We have the following cases. If i ¼ j and p ¼ q, then ypjkyiqr ¼ yiqkypjr in
(B.5) and the subtensor has two nonredundant minors instead of three. If i ¼ j and
p < q, then ypjkyiqr ¼ yipkyiqr is equal to yipryiqk ¼ yiqkypjr by an order 2 minor having
fixed first index. Hence, here also the subtensor has two nonredundant minors. Analo-
gously, if i < j and p ¼ q, then ypjkyiqr ¼ ypjkypir is equal to ypjrypik ¼ yiqkypjr by an
order 2 minor. Finally, if i < j ¼ p < q, then yijkypqr ¼ yjikyjqr is equal to yjiryjqk ¼
yijrypqk by an order 2 minor. We conclude that in all cases where i, j, p, q are not distinct
the subtensor ði; j; k; p; q; rÞ has two nonredundant minors.

Next, we consider two subtensors, denoted by ði1; j1; k1; p1; q1; r1Þ and ði2; j2; k2;
p2; q2; r2Þ, and determine which of the four terms of subtensor 1 can be identical to
a term of subtensor 2 by swapping the first two indices in y. First, we consider identical
terms due to swapping indices of two y in a term. It can be shown that this is not pos-
sible. In each case, a contradiction with i1 < p1, j1 < q1, k1 < r1 is obtained, or the two
subtensors are identical. The proof of this is in the same way as the proof of Theorem 5.2,
and it is omitted. Furthermore, it can be shown (proof omitted) that if the subtensors
have identical terms due to swapping indices of one y in a term, then i1, j1, p1, q1 are
distinct (and i2, j2, p2, q2 as well).

Let i, j, p, q be distinct with i < j < p < q. Also, let k < r. It can be shown that
identical terms occur only within groups of three subtensors ði; j; k; p; q; rÞ, ði; j; k;
q; p; rÞ, and ði; p; k; j; q; rÞ. We refer to the four terms in (B.5) as the terms 1, 2, 3, 4
in order of appearance. As in the proof of Theorem 5.2, the following hold:

• Subtensor ði; j; k; p; q; rÞ has terms 1 and 4 identical to terms 1 and 4 of sub-
tensor ði; j; k; q; p; rÞ, respectively.
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• Subtensor ði; j; k; q; p; rÞ has terms 2 and 3 identical to terms 4 and 1 of sub-
tensor ði; p; k; j; q; rÞ, respectively.

• Subtensor ði; p; k; j; q; rÞ has terms 2 and 3 identical to terms 2 and 3 of sub-
tensor ði; j; k; p; q; rÞ, respectively.

It follows that the three subtensors together (which have twelve terms in total) have six
distinct terms that should all be equal. Five minors are enough for this, and these are
nonredundant. The total number of groups of three subtensors as above equals
ðI 3ðI 3 − 1Þ∕ 2ÞðI 14 Þ. Counting two nonredundant minors per subtensor, the total number
of nonredundant minors of order 3 equals two times (B.4) minus ðI 3ðI 3 − 1Þ ∕ 2ÞðI 14 Þ,
which can be rewritten as

I 3ðI 3 − 1Þ
2

�
2ΦðI 1Þ þ

�
I 1
4

��
¼ I 3ðI 3 − 1Þ

2
ΨðI 1Þ:ðB:6Þ

Adding (B.1), (B.2), and (B.6) yields the right-hand side of (5.8). This completes
the proof.

Appendix C. Proof of Theorem 5.4. Since this proof is a fairly straightforward
generalization of the proof of Theorem 5.3, we will be briefer in its presentation. The
tensor ̲Y has size I 1 × I 1 × I 3 × I 4 and is symmetric in the first two modes. A minor of a
matrix unfolding of ̲Y corresponds to an equation yAyD ¼ yByC, where A, B, C, D con-
tain four indices. The order of a minor is equal to difðA;DÞ ∈ f2; 3; 4g. Analogous to
(B.1), the number of nonredundant minors of order 2 with fixed third and fourth indices
equals

I 3I 4ΦðI 1Þ:ðC:1Þ

Analogous to (B.2), the number of nonredundant minors of order 2 with fixed first (or
second) and third indices equals

I 1I 3
I 1ðI 1 − 1Þ

2

I 4ðI 4 − 1Þ
2

:ðC:2Þ

The number of nonredundant minors of order 2 with fixed first (or second) and fourth
indices equals

I 1I 4
I 1ðI 1 − 1Þ

2

I 3ðI 3 − 1Þ
2

:ðC:3Þ

For a minor of order 2 with fixed first and second indices, the latter can be swapped to
obtain an identical minor. The number of unique pairs of first and second indices equals
I 1ðI 1 þ 1Þ ∕ 2. Hence, the number of nonredundant minors of this type equals

I 1ðI 1 þ 1Þ
2

I 3ðI 3 − 1Þ
2

I 4ðI 4 − 1Þ
2

:ðC:4Þ

Next, we consider minors of order 3. These have one fixed index and define 2× 2× 2
subtensors of ̲Y analogous to (B.3). Analogous to (B.6), the number of nonredundant
minors of order 3 with fixed third or fourth index equals

I 3
I 4ðI 4 − 1Þ

2
ΨðI 1Þ þ I 4

I 3ðI 3 − 1Þ
2

ΨðI 1Þ:ðC:5Þ
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Of the minors of order 3 with first or second index fixed, we need only consider those with
first index fixed. Analogous to (B.5), the three minors corresponding to a 2× 2× 2 sub-
tensor of ̲Y can be written as

yijklyiqrs ¼ yiqklyijrs ¼ yijrlyiqks ¼ yijksyiqrl;ðC:6Þ

where j < q, k < r, l < s. Since there is no symmetry in the second, third, and fourth
indices, all three minors of a subtensor are nonredundant. This yields a number of non-
redundant minors of order 3 with first (or second) index fixed equal to

3I 1
I 1ðI 1 − 1Þ

2

I 3ðI 3 − 1Þ
2

I 4ðI 4 − 1Þ
2

:ðC:7Þ

Finally, we consider minors of order 4. As observed in [38], each such minor corresponds
to a 2× 2× 2× 2 subtensor of ̲Y with frontal 2× 2× 2 tensors

�
yijkl yiqkl yijrl yiqrl
ypjkl ypqkl ypjrl ypqrl

�
and

�
yijks yiqks yijrs yiqrs
ypjks ypqks ypjrs ypqrs

�
;ðC:8Þ

where we set i < p, j < q, k < r, l < s without loss of generality. As in the proof of The-
orem 5.3, we add the constraint ði; pÞ ≼ ðj; qÞ. Analogous to (B.4), this yields a total
number of subtensors equal to

I 3ðI 3 − 1Þ
2

I 4ðI 4 − 1Þ
2

I 1ðI 1 − 1Þ
4

�
I 1ðI 1 − 1Þ

2
þ 1

�
:ðC:9Þ

It is shown in [38, section 5.2] that, in absence of symmetry, each subtensor corresponds
to 16 distinct minors of order 4 that equate 8 distinct terms. Only 7 of the 16 minors are
nonredundant. These can be written as

yijklypqrs ¼ yijksypqrl ¼ ypjklyiqrs ¼ ypjksyiqrl

¼ yiqklypjrs ¼ yiqksypjrl ¼ yijrlypqks ¼ yijrsypqkl:ðC:10Þ

Note that the form of the 8 terms is analogous to (B.5). Analogous to the proof of The-
orem 5.3, it can be shown that if i ¼ j and p ¼ q, or if i ¼ j and p < q, or if i < j and
p ¼ q, or if i < j ¼ p < q, then the subtensor has only four nonredundant minors. When
i, j, p, q are distinct, identical terms occur only between subtensors ði; j; k; l; p; q; r; sÞ,
ði; j; k; l; q; p; r; sÞ, and ði; p; k; l; j; q; r; sÞ. Analogous to the proof of Theorem 5.3, the
following hold:

• Subtensor ði; j; k; l; p; q; r; sÞ has terms 1, 2, 7, 8 identical to terms 1, 2, 7, 8 of
subtensor ði; j; k; l; q; p; r; sÞ, respectively.

• Subtensor ði; j; k; l; q; p; r; sÞ has terms 3, 4, 5, 6 identical to terms 8, 7, 1, 2 of
subtensor ði; p; k; l; j; q; r; sÞ, respectively.

• Subtensor ði; p; k; l; j; q; r; sÞ has terms 3, 4, 5, 6 identical to terms 3, 4, 5, 6 of
subtensor ði; j; k; l; p; q; r; sÞ, respectively.

It follows that the three subtensors together (which have 24 terms in total) have 12
distinct terms that should all be equal. Only 11 minors are enough for this, and these
are nonredundant. The total number of groups of three subtensors as above equals
ðI 3ðI 3 − 1Þ∕ 2ÞðI 4ðI 4 − 1Þ ∕ 2ÞðI 14 Þ. Counting four nonredundant minors per subtensor,
the total number of nonredundant minors of order 4 equals four times (C.9) minus
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ðI 3ðI 3 − 1Þ∕ 2ÞðI 4ðI 4 − 1Þ ∕ 2ÞðI 14 Þ, which can be rewritten as

I 3ðI 3 − 1Þ
2

I 4ðI 4 − 1Þ
2

�
4ΦðI 1Þ þ 3

�
I 1
4

��
¼ I 3ðI 3 − 1Þ

2

I 4ðI 4 − 1Þ
2

ΩðI 1Þ:ðC:11Þ

Adding (C.1)–(C.5), (C.7), and (C.11) yields the right-hand side of (5.9). This completes
the proof.

Appendix D. Proof of Theorem 5.5. Here, we consider the special case of The-
orem 5.4 in which Að3Þ ¼ Að4Þ. The tensor ̲Y has size I 1 × I 1 × I 3 × I 3 and is symmetric
in the first two modes and in the last two modes. The numbers of nonredundant minors
of orders 2 and 3 follow from the proof of Theorem 5.4. First, we consider minors of order
2, which have two indices fixed. Suppose the first and second index are fixed. By sym-
metry, there are I 1ðI 1 þ 1Þ∕ 2 unique pairs of the first two indices. Analogous to (C.1),
we obtain ðI 1ðI 1 þ 1Þ ∕ 2ÞΦðI 3Þ nonredundant minors of this type. For the minors with
fixed third and fourth indices, we can simply swap I 1 and I 3 to obtain the number of
nonredundant minors. The number of nonredundant minors with fixed first (or second)
and third (or fourth) indices is analogous to (C.2) and (C.3). For the total number of
nonredundant minors of order 2, we obtain

I 1ðI 1 þ 1Þ
2

ΦðI 3Þ þ
I 3ðI 3 þ 1Þ

2
ΦðI 1Þ þ I 1I 3

I 1ðI 1 − 1Þ
2

I 3ðI 3 − 1Þ
2

:ðD:1Þ

Next, we consider minors of order 3, which have one index fixed. Analogous to (C.5), the
number of nonredundant minors with first (or second) index fixed plus the number of
nonredundant minors with third (or fourth) index fixed equals

I 1
I 1ðI 1 − 1Þ

2
ΨðI 3Þ þ I 3

I 3ðI 3 − 1Þ
2

ΨðI 1Þ:ðD:2Þ

Finally, we consider minors of order 4, which correspond to 2× 2× 2× 2 subtensors as
in (C.8). Since we have symmetry in the first two and the last two modes, we require not
only ði; pÞ ≼ ðj; qÞ but also ðk; rÞ ≼ ðl; sÞ. This yields a total number of subtensors equal
to

�
I 1ðI 1 − 1Þ

4

�
I 1ðI 1 − 1Þ

2
þ 1

���
I 3ðI 3 − 1Þ

4

�
I 3ðI 3 − 1Þ

2
þ 1

��
:ðD:3Þ

It can be shown that if i, j, p, q are not distinct and also k, l, r, s are not distinct, then the
subtensor has only two nonredundant minors. If i, j, p, q are not distinct, but k, l, r, s are
distinct, then the three subtensors ði; j; k; l; p; q; r; sÞ, ði; j; k; l; p; q; s; rÞ, ði; j; k; r; p; q;
l; sÞ together have six nonredundant minors. Analogously, if i, j, p, q are distinct,
but k, l, r, s are not, then the three subtensors ði; j; k; l; p; q; r; sÞ, ði; j; k; l; q; p; r; sÞ,
ði; p; k; l; j; q; r; sÞ together have six nonredundant minors. Hence, in these cases there
are two nonredundant minors per subtensor.

If i < j < p < q and k < l < r < s, then identical terms occur only within a group of
nine subtensors: ði; j; k; l; p; q; r; sÞ, ði; j; k; l; q; p; r; sÞ, ði; p; k; l; j; q; r; sÞ, ði; j; k; l;
p; q; s; rÞ, ði; j; k; l; q; p; s; rÞ, ði; p; k; l; j; q; s; rÞ, ði; j; k; r; p; q; l; sÞ, ði; j; k; r; q; p; l; sÞ,
and ði; p; k; r; j; q; l; sÞ. It can be shown that these 9 subtensors together have 18 distinct
terms that should all be equal. Only 17 minors are enough for this, and these are non-
redundant. The total number of groups of 9 subtensors as above equals ðI 14 ÞðI 34 Þ. Count-
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ing two nonredundant minors per subtensor, the total number of nonredundant minors
of order 4 equals two times (D.3) minus ðI 14 ÞðI 34 Þ, which can be rewritten as

2

�
ΦðI 1Þ þ

�
I 1
4

���
ΦðI 3Þ þ

�
I 3
4

��
−
�
I 1
4

��
I 3
4

�
¼ ΔðI 1; I 3Þ:ðD:4Þ

Adding (D.1), (D.2), and (D.4) yields the right-hand side of (5.10). This completes
the proof.
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