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ON UNIQUENESS OF THE CANONICAL TENSOR DECOMPOSITION
WITH SOME FORM OF SYMMETRY"

ALWIN STEGEMAN'

Abstract. We study the uniqueness of the decomposition of an nth order tensor (also called n-way
array) into a sum of R rank-1 terms (where each term is the outer product of n vectors). This decomposition
is also known as Parafac or Candecomp, and a general uniqueness condition for n = 3 was obtained by Kruskal
in 1977 [Linear Algebra Appl., 18 (1977), pp. 95-138]. More recently, Kruskal’s uniqueness condition has been
generalized to n > 3, and less restrictive uniqueness conditions have been obtained for the case where the
vectors of the rank-1 terms are linearly independent in (at least) one of the n modes. We consider the decom-
position with some form of symmetry, and prove necessary, sufficient, and necessary and sufficient uniqueness
conditions analogous to the asymmetric case. For n = 3, 4, 5, we also prove generic uniqueness bounds on R.
Most of these conditions are easy to check. Throughout, we emphasize the analogies and striking differences
between the symmetric and asymmetric cases.
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1. Introduction. Tensors of order n are defined on the outer product of n linear
spaces, 7, 1 < ¢ < n. Once bases of spaces T, are fixed, they can be represented by
n-way arrays. For simplicity, tensors are usually assimilated with their array represen-
tation.

We consider the nth order tensor decomposition of the form

R
(1.1) X=>acac cal,
r=1

where X € RI1*2% <L ig an nth order tensor (or n-way array), ag-j) € RY are vectors,
and o denotes the outer vector product. For vectors alV), ... a(™ the outer vector pro-
duct a) -0 al™ is an nth order tensor with entries a§11>a§f> e a,(i"). We refer to X in
(1.1) as having n modes, and the j in al? corresponds "to mode j. Let
AU = [a(lj )|a(2j>| e |a(lg)] denote the jth component matrix. Hence, matrix AU) has size
I; x R. We denote an nth order decomposition (1.1) as (A1, ..., A(™). Note that when
the modes of X are permuted in (1.1), the component matrices AU ) are permuted iden-
tically.

An nth order tensor has rank 1 if it can be written as the outer product of n vectors.
The rank of an nth order tensor X is defined as the smallest number of rank-1 tensors
whose sum equals X. Hence, (1.1) decomposes X into R rank-1 terms. Hitchcock [15],
[16] introduced tensor rank and the related tensor decomposition (1.1). The same de-

composition was proposed independently by Carroll and Chang [3] and Harshman [14]

*Received by the editors November 11, 2010; accepted for publication (in revised form) by N. Mastronardi
April 14, 2011; published electronically June 29, 2011.
http://www.siam.org/journals/simax/32-2/81461.html
"Heijmans Institute for Psychological Research, University of Groningen, Grote Kruisstraat 2/1, 9712 TS
Groningen, The Netherlands (a.w.stegeman@rug.nl, http://www.gmw.rug.nl/~stegeman). This work was
supported by the Dutch Organisation for Scientific Research (NWO), VIDI grant 452-08-001.

561

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.gmw.rug.nl/~stegeman

562 ALWIN STEGEMAN

for component analysis of nth order tensors. They named it Candecomp and Parafac,
respectively.

For a given nth order tensor and number R of rank-1 components, a best fitting
decomposition (1.1) is usually found by an iterative algorithm. The most well-known
algorithm is alternating least squares. A comparison of algorithms for n = 3 can be
found in Tomasi and Bro [46]. Note that a best fitting decomposition is a best rank-
R approximation of the tensor.

Real-valued applications of tensor decompositions occur in psychology and chem-
istry; see Kroonenberg [22], Kiers and Van Mechelen [19], and Smilde, Bro, and Geladi
[32]. Complex-valued tensor decompositions are used in, e.g., signal processing and tele-
communications research; see Sidiropoulos, Giannakis, and Bro [30], Sidiropoulos, Bro,
and Giannakis [31], and De Lathauwer and Castaing [8]. For a general overview of ap-
plications of the decomposition (1.1) and related decompositions, see Kolda and Bader
[20] or Acar and Yener [1].

A drawback of computing a best fitting tensor decomposition (1.1) is that an opti-
mal solution may not exist. Indeed, a tensor may not have a best rank- R approximation.
This is due to the fact that the set of tensors of rank at most R is not closed for R > 2; see
De Silva and Lim [11]. In such cases, some columns of the AU) become nearly linearly
dependent and large in magnitude while running an iterative algorithm designed to find
a best rank-R approximation; see Krijnen, Dijkstra, and Stegeman [21]. This phenom-
enon is known as “diverging components” or “degeneracy”; see Kruskal, Harshman, and
Lundy [24] and Stegeman [33], [34], [35], [36]. This problem can be fixed by including
interaction terms in the decomposition; see Stegeman and De Lathauwer [42] for the case
n =3 and I3 = 2, Rocci and Giordani [28] for the case n = 3 and R = 2, and Stegeman
[39] for a general approach for n =3 and R < min(Iy, I, I5).

An attractive feature of the decomposition (1.1) is that it is unique up to permuta-
tion and scaling under mild conditions. We define the uniqueness of (1.1) as follows.

DEFINITION 1.1, The decomposition (AD), ..., AM) is called unique up to permuta-
tion and scaling if any alternative decomposition (B, ... B™) satisfies BU) =
A(j)HAj, Jj=1,....n, withIl an R x R permutation matriz and A; nonsingular diag-
onal matrices such that [Tj_; A; = 1. o

Hence, an nth order decomposition is unique up to permutation and scaling if the
only ambiguities it contains are the permutation of the R rank-1 components and the
scaling of the n vectors constituting each rank-1 component. Two decompositions that
are equal up to these indeterminacies are called equivalent.

The classical uniqueness condition for n = 3 is due to Kruskal [23]. Kruskal’s con-
dition relies on a particular concept of matrix rank that he introduced, which has been
named k-rank (after him). Specifically, the k-rank of a matrix is the largest number z
such that every subset of z columns of the matrix is linearly independent. We denote the
k-rank of a matrix A as ks. For a decomposition (A, A®), A®)) Kruskal [23] proved
that

(1.2) 2R+2 < kA(l) + k’A(z) + kA(:s)

is a sufficient condition for uniqueness up to permutation and scaling. A more condensed
and accessible proof of (1.2) was given by Stegeman and Sidiropoulos [41]. See Rhodes
[27] for a different approach. Kruskal’s uniqueness condition was generalized to n > 3 by
Sidiropoulos and Bro [29]: for a decomposition (A1), ..., A(") the uniqueness condition
becomes
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(1.3) 2R+ (n—1) <> ko
j=1

From (1.3), it can be seen that the uniqueness condition becomes less restrictive as the
order n increases. Indeed, when increasing n by one the right-hand side of (1.3) increases
with an additonal k-rank, while the left-hand side increases by one only. Note that the
k-ranks in (1.3) may not be zero. Indeed, k, ) = 0 implies (by convention) that AU has
an all-zero column and, hence, that the decomposition contains an all-zero term among
its R terms. In this case we have nonuniqueness: an alternative decomposition into R — 1
rank-1 terms is possible.

Less restrictive uniqueness conditions have been obtained for the case where (at
least) one of the component matrices AY) has rank R; ie., the vectors a(rj ),
r=1, ..., R, are linearly independent in (at least) one mode j. See Jiang and Sidiro-
poulos [18] for n =3, De Lathauwer [7] for n =3 and n =4, and Stegeman [3§]
for n > 3.

In this paper, we consider the nth order decomposition (1.1) with some form of
symmetry, that is, a decomposition (AM, ..., A™) in which some of the component
matrices are identical. For example, if n =3 and A = A®_ then the entries of X
are symmetric in the first two modes: z;;;, = z;;, for all 4, j, k& If n=4 and
A =A@ then we have Tip = Ty for all 4, j, k, [. We assume that the modes of
the decomposition are permuted such that identical component matrices occur in
the first few modes. In what follows, we will sometimes refer to a decomposition with
some form of symmetry as a “symmetric decomposition.”

Due to the scaling indeterminacy, a symmetric decomposition can have component
matrices with proportional columns (e.g., Al = A®A with a nonsingular diagonal
matrix A) instead of identical component matrices. When (at least) one mode is
excluded from the symmetry, the constants of proportionality can be absorbed in
the component matrix corresponding to that mode. For convenience, we assume iden-
tical component matrices instead of proportional columns.

Applications of the tensor decomposition (1.1) with some form of symmetry are the
following. The case n = 3 and A = A corresponds to the Indscal model introduced
by Carrol and Chang [3]. Indscal is a multidimensional scaling method for the case where
several symmetric matrices of proximities or (dis)similarities are available for the same
objects. In signal processing, the same form of symmetry occurs in the so-called second
order blind identification (SOBI) method; see Belouchrani et al. [2]. Here, the goal is to
separate signal sources from an observed mixture of signals by decomposing a set of
covariance matrices, each measured at a different point in time. For the underdeter-
mined case of SOBI we refer to De Lathauwer and Castaing [10]. Other blind separation
methods resulting in a decomposition with the same form of symmetry include Pham
and Cardoso [26], who also use covariance matrices, and Yeredor [47], who uses second
order derivatives of the characteristic function of the observed signal mixture. For an
overview of these models, we refer to Yeredor [48]. For n = 4and AU = A, j = 1,2, 3, 4,
the tensor decomposition (1.1) describes the basic structure of fourth order cumulants of
multivariate data on which a lot of algebraic methods for independent component ana-
lysis (ICA) are based (Comon [4], De Lathauwer, De Moor, and Vandewalle [6], and
Hyvérinen, Karhunen, and Oja [17]). For an ICA algorithm explicitly using (1.1) with
this form of symmetry we refer to De Lathauwer, Castaing, and Cardoso [9]. For n = 5,
AM = A®) and A® = A®W | the decomposition (1.1) can be found in De Vos et al. [12].
This form of decomposition results from combining the third order decomposition with
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ICA in one mode. Finally, the case n = 5 and AU = A, j = 1, 2, 3, 4, appears in Ferréol,
Albera, and Chevalier [13] where a blind separation method is proposed that uses a set of
fourth order cumulants, each measured at a different point in time.

In signal processing applications, forms of symmetry may occur with, e.g., A} equal
to the complex conjugate of A®). The description of the applications above refers to the
real case (if a complex case exists also), and throughout we will consider real-valued
decompositions. However, our results can be translated easily to the complex case. This
will be elaborated upon in the discussion section at the end of this paper.

We focus on the uniqueness properties of (1.1) when some form of symmetry is pre-
sent. Uniqueness of such a decomposition is not necessarily identical to uniqueness of its
asymmetric counterpart. Indeed, if a particular form of symmetry is inherent to the de-
composition, then this form of symmetry must also be present in an alternative decom-
position. Hence, the set of symmetric alternative decompositions is a subset of the set of
all alternative decompositions. However, some uniqueness conditions for the asymmetric
case can still be used. If the uniqueness condition (1.3) holds for a decomposition
(AM, ..., AM) with some form of symmetry, then the decomposition is unique up
to permutation and scaling. Hence, there are no nonequivalent asymmetric or symmetric
alternatives. One of the main results of this paper is that if (at least) one of the com-
ponent matrices A has rank R, and mode j is excluded from the symmetry, then un-
iqueness with respect to the set of symmetric alternatives is identical to uniqueness with
respect to the set of asymmetric alternatives.

In Stegeman [38] an overview is presented of necessary, sufficient, necessary and
sufficient, and generic uniqueness conditions for the asymmetric nth order decomposi-
tion (1.1). The generic uniqueness conditions hold for decompositions with generic
AW, A and rank(A™) = R and give a bound on R in terms of Iy, ..., I, ;.
In this paper, we prove symmetric analogues of most of these conditions. Although
the symmetric uniqueness conditions are mostly analogous to the asymmetric ones,
sometimes a more complicated proof is needed when symmetry is present. The most
striking difference concerns the generic uniqueness bounds on R, which are much more
restrictive in the presence of symmetry.

Our analysis yields more insight into the uniqueness of (1.1) with some form of sym-
metry. Moreover, our results include easy-to-check uniqueness conditions, and they can
be applied to an important class of applications. The organization of this paper is as
follows. Section 2 contains definitions and notation. In section 3, we prove our necessary
uniqueness conditions. In section 4, we consider the case where (at least) one of the com-
ponent matrices A has rank R, and mode j is excluded from the symmetry. For con-
venience, we take 7 = n. For decompositions with symmetry, we prove necessary and
sufficient uniqueness conditions and an easy-to-check sufficient uniqueness condition
analogous to [38]. Moreover, we show that all alternative decompositions have the same
form of symmetry as the original decomposition when rank(A(™)= R and
rank(AM ©---© A1) = R. In section 5, we prove generic uniqueness bounds for
n =3, 4, 5 and several forms of symmetry. Each of sections 3, 4, and 5 starts with a
summary of the uniqueness conditions proven in [38] for the asymmetric case. Section 6
contains several examples illustrating our results from sections 4 and 5 for the case n = 3
and AV = A®), Finally, section 7 contains a discussion of our results.

2. Definitions and notation. We will denote vectors as x, matrices (second order
tensors, 2-way arrays) as X, and higher order tensors (multiway arrays) as X. We use ®
to denote the usual Kronecker product, and ©® denotes the (columnwise) Khatri-Rao
product; i.e., for matrices X and Y with R columns, X © Y = [x; ® y;]...|Xp ® ¥g].
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The transpose of X is denoted as X7, and diag(x) denotes the diagonal matrix with the
entries in vector x on its diagonal. We refer to a matrix as having full column rank if its
rank equals its number of columns. Analogously, a matrix has full row rank if its rank
equals its number of rows.

Next, we define some concepts. A mode-j vector of an I; X Iyx --- X1, tensor is
defined as an I; x 1 vector that is obtained by varying the jth index and keeping the
other indices fixed. A mode-j matrix unfolding of a tensor is defined as a matrix contain-
ing all mode-j vectors as either rows or columns. For the decomposition (A, ..., A(™)
in (1.1), we define the mode-j matrix unfolding as

(2.1) (@ A“>> (AT,

i#]

where (©) denote a series of (columnwise) Khatri-Rao products.

For decompositions with some form of symmetry, we introduce the following nota-
tion to define the form of symmetry. Let £ = {&;, ...,E,} with each £, C {1, ..., n}
containing mode numbers for which the component matrices are identical; i.e., for
i # 7 and some g,

(2.2) ije€&, & A=AU).

Hence, j € € if and only if A is identical to some other component matrix. We require
that £, N &, = @ for q # u.

3. Necessary uniqueness conditions. Here, we prove two necessary uniqueness
conditions for decompositions with some form of symmetry. The conditions are
symmetric analogues of necessary uniqueness conditions proven in [38]. The asymmetric
conditions of [38] are stated in section 3.1, while section 3.2 contains the symmetric
results.

3.1. Asymmetric decompositions. Below, we state two necessary uniqueness

results by [38] for an asymmetric decomposition (A1), ..., A(™),

Levuia 3.1 If rank(Qly, ADY < Rforsomej € {1,...,n}, n >3, then the decom-
position (AN, ..., AM) is not unique up to permutation and scaling. Moreover, an al-
ternative decomposition into R — 1 rank-1 terms exists. 0

Levmma 3.2. If the decomposition (A<1>, ...,A(”>), n >3, contains n — 2 distinct
component matrices that have columns s and t proportional, s # t, then the decomposi-
tion is not unique up to permutation and scaling. a

Lemma 3.1 states that any Khatri-Rao product of all but one component matrix has
full column rank if the decomposition is unique. For n = 3, this result is due to Liu and
Sidiropoulos [25]. For n = 3, Lemma 3.2 states the well-known necessary uniqueness
condition k) > 2 for j =1, 2, 3.

3.2. Decompositions with some form of symmetry. Our symmetric analogue
of Lemma 3.1 is the following.

Lemmva 3.3. Let the decomposition (AW, ..., A™) have some form of symmetry,
n > 3. If rank(©Ol; AY) < R for somej € {1,...,n}, and j ¢ &, then the decomposi-

tion is not unique up to permutation and scaling. Moreover, an alternative decomposi-
tion into R — 1 rank-1 terms exists with the same form of symmetry.

Proof. The proof is identical to the proof of Stegeman [38, Lemma 3.1]. We repeat it
for completeness. Suppose (G)Z;é y A)x = 0 for some nonzero vector X. Then the mode-
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matrix unfolding of the decomposition satisfies

(3.1) (©a0) a0 = (Oa0) Al +yx1)"

i#] i#]

for any vector y. Hence, in the decomposition we may replace A by (AW +yxT) for
any vector y. This proves nonumqueness Moreover, we can choose y such that one col-
umn, say column p, of (A + yx”) vanishes. Hence, a decomposition into R — 1 rank-1
terms can be obtained by deletlng columns ag from each component matrix A, i # j,
and replacing AY) by (A< )+ yx T) with its all-zero column p deleted. 0

In the proof of Lemma 3.3 an alternative decomposition is constructed by changing
only AU). When j ¢ &, the alternative decomposition features the same form of symme-
try as the original decomposition. This raises the question of whether Lemma 3.3 is still
true for j € €. In that case, changing only A) yields an alternative decomposition with a
different form of symmetry (or none at all). We were not able to prove Lemma 3.3 for
this case. However, we also have not found a counterexample; that is, a unique decom-
position for which ( i A(i)) has rank less than R and j € £. Hence, this issue remains
an open question.

For j = n =3 and A1) = A®_ it is conjectured that the existence of an asymmetric
nonequivalent alternative decomposition implies the existence of a symmetric nonequi-
valent alternative decomposition. If this is true, then rank(A®") ® A®)) < Rimplies non-
uniqueness. No counterexample to this conjecture has been found so far. Proofs of the
conjecture for various cases can be found in Ten Berge, Sidiropoulos, and Rocci [44] and
Ten Berge, Stegeman, and Bennani Dosse [45].

Next, we show that Lemma 3.2 remains true in the symmetric case. Its proof,
however, is more complicated.

LeEmMA 3.4. Let the decomposition (AW, ..., A™) have some form of symmetry,
n > 3. If there exist n — 2 distinct component matrices that have columns s and t pro-
portional, s # t, then the decomposition is not unique up to permutation and scaling.

Proof. Without loss of generality, let aﬁj) = oz(j)affj> forj=1,....,n—2.Ifn—-1¢
€ and n ¢ &, then the proof is identical to Stegeman [38, Lemma 3.2]. We repeat this
proof for completeness. For the rank-1 terms s and ¢ of the decomposition we have

agl) 6.0 agn) + a§1> 6.0 aim = agl) 6.0 a£n72) [o(a‘S |at >][agn)|a§n>]T

3.2

( ) _ aEU oo a§n72> . [&agn71)|a£n71)]U([agn)‘ain ]U_T)T

with a = H;L;f «) and U a nonsingular 2 x 2 matrix. Since U is not limited to the pro-
duct of a permutation matrix and a nonsingular diagonal matrix, (3.2) implies non-
uniqueness. As can be seen, the nonuniqueness of the matrix decomposition (second
order) is used here. Also, since the first n — 2 component matrices are changed identi-
cally (by replacing column s by column t), the alternative decomposition features the
same form of symmetry as the original decomposition.

Next, suppose n — 1 € € and n ¢ E. Then columns s and ¢ of A are proportional,
j=1,...,n—1. This implies that columns s and ¢ of (@;’;11 AU)) are proportional.
Hence, the latter has rank less than R. By Lemma 3.3, the decomposition is not unique,
and an alternative decomposition (with the same form of symmetry) exists with R — 1
components.

Next, supposen —1 € Eand n € & Wlth A1 £ A Then columns s and ¢ of AU)

are proportional, j =1, ..., n. Let a(s ) =gl ( also for j = n — 1, n. This implies that
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(3.3) al’ o cal” +al o cal” = (1+a)al o0 al”)

with @ = H}L:1 a9, Hence, the sum of these two rank-1 terms is a rank-1 term itself. An
alternative decomposition featuring R — 1 components and the same form of symmetry
can be constructed as follows. In each component matrix we delete column ¢. If
E# {1, ...,n}, then there exists i ¢ £. We replace al’ by (1+ &)agi), and we replace
al’) by ag'j) for j # i. Next, suppose £ = {1 ., n}. If there exists £, with odd cardinality
k, then we replace agi) by (1 + &)(1/k Vforie &,, and we replace agj) by a(tj) forj¢ &,
If there does not exist £, with odd cardmahty, then a is a product of squared numbers
and, hence, @ > 0. In this case, we replace a'’ by (1+ )(1/")a§*7) forj=1,....n
It remains to consider the case n — 1 € £ and n € £ with A1) = A, Let n — 1,

ne&,lfje&, for bome 1 <jJ < n — 2, then (3.3) holds, and we can proceed as above.

The same is true when a{" and a; (") are proportional. Next, suppose E,={n—1,n}and
al" and ai ") are not propormonal (or all-zero). Let

(3.4) s—|Vi-ap*  —ap
B V1-—ap?
w1th @ = [[/=fa'? as above and B chosen such that 1 —a&g* > 0. Let [al”al"] =

[as |a(, |S. It can be verified that Sdiag(a,1)ST = diag(&, 1). This implies that, ana-
logous to (3.2), we have

al! o..oal™ 1 al oa” =alV o cal"? o [gal a2l |al")"

(
t
(3.5) = ai” aﬁ”*” o [@al" Vjal" Vjal” jalm ",

ca™ o a™ yal,

m, (n) (1)

n—2
:as o--~oa§n )

which shows nonuniqueness of the decomposition. Note that the alternative decomposi-
tion is constructed by changing only A("~1) = A(" and features the same form of sym-
metry as the original decomposition. This completes the proof. |

4. Uniqueness conditions for the case rank(A®™) = R. Here, we consider un-
iqueness conditions for a decomposition (A1), ... A() with some component matrix
AU) having full column rank R. For convenience, we set j = n. Section 4.1 states the
uniqueness conditions of [38] for the asymmetric case. Section 4.2 contains the analogues
for decompositions with some form of symmetry. Also, we show that all alternative de-
compositions have the same form of symmetry as the original decomposition when
rank(A(™) = R and rank(AM ©--.© A"D) = R,

4.1. Asymmetric decompositions. We assume that (A ©-..-© A1) has
full column rank R, and we denote an alternative decomposition as (B(l), ...,B(">).
Equating the mode-n matrix unfoldings of the two decompositions yields

(4.1) AV &0 AB-DY AT = (BO ... BD)(BM)T,

Since the left-hand side of (4.1) has rank R, it also follows that the two matrices on
the right-hand side of (4.1) have rank R. Uniqueness of the decomposition is not affected
by premultiplying a component matrix by a nonsingular matrix. Let S be nonsingular
such that SA(" = [Iéf]. When replacing A(™ in (4.1) by SA(™| the full column rank of
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(B ®---© B(" 1) guarantees that the last I, — R rows of B are all-zero. Hence,
without loss of generality we may set AW = I (and I, = R) and B(" square and non-

singular. For n = 3 this was shown by Ten Berge and Sidiropoulos [43]. We rewrite
(4.1) as

(4.2) AV ©-..0 AB-DYBM)~T = (BY ... BOD),

The following result of [38] shows that uniqueness holds if and only if each linear com-
bination of the columns of (A ©---® A("1) has at most one nonzero coefficient. For
n = 3 this is due to Jiang and Sidiropoulos [18]. Let @(+) denote the number of nonzero
entries of a vector.

Tueorem 4.1. Let (AW, ..., A™) n >3, be a decomposition with rank(A™) = R.
Then the decomposition is unique up to permutation and scaling if and only if, for any
vector d € RE,

(4.3) AV O oA NYd=(f® --®f, ;) implies od)<1. 0O

Condition (4.3) implies full column rank of (A ®---® A("~1)). Condition (4.3) is
not easy to check. Reshaping it into I;x --- xI,_; tensor form yields

R

. rank( Y = (A’ o---oay < implies <

44 k(Y d,(aV (n=1) 1 1 d) <1
r=1

with d = (dy, d, ..., dp)T. Stegeman [38, Lemma 4.6] shows that an (n — 1)th order
tensor has rank at most 1 if and only if its mode-j matrix unfolding has rank at most

1,7 =1,...,n— 1. Hence, all distinct 2 x 2 minors of the mode-j matrix unfolding of Y
should be equal to zero for j =1, ...,n — 1. This can be written as
" n—1 ) o
(4.5) Ul Vd = m(@ A“)) OmAD)d=0, j=1,....n—1,
| i#]

where d = (dydy. dyds, ..., dp_1dg)7, and m(-) is defined as follows.
DErFINITION 4.2. For an I X R matriz A, let the I(I — 1) /2 x R(R — 1) /2 matriz
m(A) have entries

(4.6) det<zm Z“l) with 1<i<j<I and 1<g<h<R,
Jg jh

where in each row of m(A) the value of (i, j) is fized and in each column of m(A) the
value of (g, h) is fixed. The columns of m(A) are ordered such that index g runs slower
than h. The rows of m(A) are ordered such that index i runs slower than j. 0

By defining

(4.7) v =1 . |,
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the following equivalent of Theorem 4.1 is obtained. For n = 3, this result is due to Jiang
and Sidiropoulos [18].

Tueorem 4.3. Let (AW, ..., A™), n > 3, be a decomposition with rank(A™) = R.
Then the decomposition is unique up to permutation and scaling if and only if, for any
vector d € R¥,

(4.8) U Dd =0 implies o(d) <1,

where d = (dydy, dyds, ..., dp_1dp)T. O

From the form of d it can be seen that d = 0 implies o(d) < 1. Hence, U1 having
full column rank is sufficient for condition (4.8) to hold.

COROLLARY 4.4. Let (AW, ... ,A™) n>3, be a decomposition with
rank(A<">) = R. Then the decomposition is unique up to permutation and scaling if
U has full column rank. O

Contrary to (4.3), the condition of U™~V having full column rank is easy to check.
Corollary 4.4 was proven independently for n = 3 and n = 4 by De Lathauwer [7].

4.2. Decompositions with some form of symmetry. Here, we consider unique-
ness conditions for a decomposition (A1), ..., A() with some form of symmetry and
rank(A(™) = R. If n € £, then at least one other component matrix has rank R as well.
Condition (1.3) implies uniqueness when the sum of the other n — 2 k-ranks equals at
least n — 1 (and no k-rank equals zero). This condition is very mild. In the following we
assume n ¢ €. For n € &, we refer to condition (1.3).

Before we prove uniqueness conditions, we consider the type of alternative de-
compositions that are possible. Theorem 4.5 below states that, up to scaling indetermi-
nacies, any alternative decomposition will feature the same form of symmetry when
(AM ©---® AP D) has full column rank R. For n = 3 and A®) = A®)| Theorem 4.5
complements the results of Ten Berge, Sidiropoulose, and Rocci [44] and Ten Berge,
Stegeman, and Dosse [45]. When (A1) © ... ® A(""D) has rank less than R, nonunique-
ness follows from Lemma 3.3.

THEOREM 4.5. Let (A<1), e ,A<")) be a decomposition with some form of symmetry,
n> 3. Letrank(A™) = R and n ¢ £. Ifrank(AD © ---© A1) = R, then any alter-
native decomposition (BY, ... BM) satisfies BY) = BUAUD) if AW = AU for 1 <,

j < n—1, with A" being a nonsingular diagonal matriz.

Proof. As in section 4.1, we assume without loss of generality that A = I, (and
I, = R). We focus on (4.2) in which B(" is nonsingular and (B ®---® B("~V) has
full column rank. Let d be an arbitrary column of (B™)~7, and let (f; ®---® f,_)
be an arbitrary column of (B @ ---® B("~1)). We reshape the equation (AN ©---©
A = (f; ®---®f,_;) in (n — 1)th order tensor form as

R
(4.9) Y=Y d @V o oal™ Y = (f 0-euof, ).

r=1

Full column rank of (A © .- ® A1) guarantees that Y is not all-zero unless d = 0.
The latter is impossible since d is a column of the nonsingular (B(™)~7. Since Y is not
all-zero, none of the f; are all-zero. Moreover, the rank-1 tensor on the right-hand side of
(4.9) should have the same form of symmetry as Y.

Let £, = {j1, ....jx}; i.e., AU) =...= AUY. Then (4.9) implies that the kth order

rank-1 tensor (f; o---of; ) is symmetric in all £ modes. Since all f; # 0, it follows that
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f;.....f; are proportional. The latter are column ¢ of BUY, ... BUY with ¢ arbitrary.
This completes the proof. 0

The alternative decompositions in Theorem 4.5 can be rescaled to feature the same
form of symmetry as the original decomposition (i.e., B?) = BU) if A() = AU)). This can
be done by incorporating all the A7) (containing the constants of proportionality) in
matrix B(".

In Theorem 4.6 below, we prove the symmetric analogue of the necessary and suffi-
cient uniqueness condition in Theorem 4.1. Considering the result of Theorem 4.5, it
may not be surprising that, without loss of generality, we may take f, =f; if
A =AW in condition (4.3).

TueorEM 4.6. Let (AW, ..., A™) be a decomposition with some form of symmetry,
n > 3. Letrank(A™) = R and n ¢ E. Then the decomposition is unique up to permuta-

tion and scaling if and only if, for any vector d € R¥,
(4.10) AV G- .0 A Nd=(f,®---®f, ;) implies w(d) <1,

where £, = £, if A) = AW 1 <4, j<n—1.

Proof. First, we prove that (4.10) is a sufficient condition for uniqueness. Condition
(4.10) implies full column rank of (A ®---® A("=V). Indeed, rank deficiency implies
that either w(d) > 2 and f; = 0 is possible or that (A) ®---© A" Y) has an all-zero
column, which makes w(d) = 2 possible. As in the proof of Theorem 4.5, we focus on
(4.2). Condition (4.10) implies that each column of (B(")~7 contains at most one non-
zero entry. Since B(") is nonsingular, each column has exactly one nonzero entry. More-
over, (B™)~T =TIA,', where II is a permutation matrix, and A, is a nonsingular
diagonal matrix. Hence, we have B(" =TIA,, and it follows that

BY o 0B ) =(AD o...0 AL-NIA;' = (AVI -0 APVINA, L.
(4.11)
Hence, each column of (B1) @ ---® B 1) is arescaled column of (A) ©---® A1),

Each such column r can be interpreted as a vectorized (n — 1)th order tensor that is the
outer product of b&”, e bﬁf‘*”. Rewriting one column in this form yields

(4.12) by oo by = 2(a oo a "),

where, for fixed r, the value of ¢ is given by the permutation II, and 4 # 0 is the corre-
sponding diagonal entry of A, 1. Since none of the columns in (4.12) is all-zero, it follows
that bY is proportional to agj) for j=1,...,n—1. This implies BY) = AUTIA ,

j=1,...,n—1, for nonsingular diagonal matrices A;. Since (A(l) ©--© A=)
has full column rank, (4.11) implies that H;le A; = Al Hence, the decomposition
(AM, ..., AM) is unique up to permutation and scaling. This shows the sufficiency

of condition (4.10). Note that the signs of the diagonal entries of A,, are required to
accommodate the form of symmetry in the decomposition. For example, if n =3
and A = A®) | then (4.12) implies 1 > 0.

Next, we prove necessity of (4.10) analogous to the proof of Stegeman [38,
Theorem 4.2]. As in section 4.1, we set A" = I without loss of generality. Suppose
AV ©.-.oArNd=(f; ®---®f, ;) for some vector d with w(d)>2 and
f,=1; if A) =AU Let d, #0, and set BU) equal to AU with column p replaced
byf;, j=1,....,n—1. Then @V & -@al"™") = (BY @...® BO1)g for some vec-
tor g with w(g) > 2. Let B be equal to I with row p replaced by g”. We have
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(4.13) (A(l) @O A(nfl)) — (B(l) OO B<”’1))(B<”))T,

Moreover, if A = AU), then BY) = BU) for 1 < i, j < n — 1. Together with n ¢ &, this
shows that (B, ..., B(") is an alternative decomposition featuring the same form of
symmetry as (A®), ..., A(»1) Tp). Since the BY) are not rescaled column permutations
of the AU), the nonuniqueness of the decomposition follows. 0

When comparing conditions (4.3) and (4.10) for a decomposition featuring some
form of symmetry, the following can be observed. By the logical forms of the conditions,
it is clear that (4.3) implies (4.10). If (4.3) does not hold, then a nonequivalent alter-
native decomposition exists. By Theorem 4.5, this alternative decomposition features
the same form of symmetry as the original decomposition. Hence, we have nonunique-
ness which also implies that (4.10) does not hold. This yields the following corollary.

COROLLARY 4.7. Let (A(l), cees A(”>) be a decomposition with some form of symme-
try, n > 3. Letrank(A(™) = R and n ¢ £. Then condition (4.3) holds if and only if con-
dition (4.10) holds. 0

Since U1 having full column rank implies condition (4.8), which is equivalent to
condition (4.3) by Theorem 4.3, we obtain the following analogue of Corollary 4.4.

CoroLLARY 4.8. Let (AW, ..., A™) be a decomposition with some form of symme-
try, n > 3. Let rank(A(">) = R andn ¢ E. Then the decomposition is unique up to per-
mutation and scaling if the matriz U=V has full column rank. 0

5. Generic uniqueness conditions for the case rank (A®™) = R. Here, we con-
sider the matrix U1 when AM, ..., A(»Y are generic. In [38] bounds on R are ob-
tained in terms of I, ..., I,_; such that U1 has full column rank under these bounds.
In view of Corollary 4.4, these are called generic uniqueness conditions. In section 5.1, we
give an overview of these conditions as proven in [38] for the asymmetric case. In sec-
tion 5.2, we present generic uniqueness bounds for n = 3, 4, 5 and several forms of sym-
metry. Also, we compare the bounds under symmetry to the bounds for the asymmetric
case.

5.1. Asymmetric decompositions. Each row of U1 in (4.7) corresponds to a
2 x 2 minor of a matrix unfolding of the (n — 1)th order tensor Y with decomposition

=

(5.1) Y=Y 4@ 0al")

According to condition (4.4), the tensor Y needs to have rank at most 1. This is guar-
anteed when all 2 x 2 minors of all its matrix unfoldings are zero. However, checking all
distinct 2 x 2 minors of all matrix unfoldings of Y is not needed. Some 2 x 2 minors are
redundant regardless of the entries of Y or the sizes of Iy, ..., I, ; and R. Since each
2 X 2 minor corresponds to a row in U™~V a redundant minor corresponds to a redun-
dant row of U1, When these redundant rows are deleted from U("~ Y then it has full
column rank if it is square or vertical, and A, ... A" are generic. For n = 3 and
n = 4 this was shown by De Lathauwer [7]. The following generalization to arbitrary
n > 3 is due to Stegeman [38]. Let the numbers @, ,) be given by

(5.2) (man) = Z = O

m J E‘Sm J QS,”

where the summation is over all subsets S,, of {1, ..., n — 1} containing m distinct ele-
ments. If m =n — 1, then we set [[;45 I; =1
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TueoreM 5.1. Let (AW, ... AM), n >3, be a decomposition with generic
(AD, . AP D) gnd rank(A™) = R. Then UV has full column rank if

R R _ 1 n—1
(53) % < Z(mel - 1)Q(m.n)-
m=2
Hence, the decomposition is unique up to permutation and scaling if (5.3) holds. O

The matrix U~V has R(R — 1) /2 columns. The right-hand side of (5.3) represents
its number of nonredundant rows.

5.2. Decompositions with some form of symmetry. In this section, we pre-
sent generic uniqueness bounds for n = 3, 4, 5 and several forms of symmetry. The sym-
metry in the decomposition (A1), ..., A"~} is of the same form as the symmetry in Y
in (5.1). As in [38], the number of nonredundant rows of U™~V is determined as follows.
Each row of U™V corresponds to a 2 x 2 minor of a matrix unfolding of Y. A 2 x 2
minor of a matrix unfolding of Y corresponds to an equation y,yp = ygyc, where
A, B, C, D contain n — 1 indices. Since we do not know which entries of Y are nonzero,
redundant minors can only be identified by determining identical terms in the equations
of the minors. Here, a term is the product of two entries of Y, as in y4yp.

In this way, we are able to determine the number of nonredundant rows of U1,
When the latter equals K, the generic uniqueness bound is of the form R(R—1) /2 < K,

since U™~V has R(R — 1) /2 columns. Let

(5.4) (1) = 1(14_ D (1(12— D, 1) - (i)

(5.5) W(1) = 20(I) + ( 4>, Q(1) = 40(I) + 3( i)

o swn-sfou () o (1) ()(2)

where the terms (7

1) appear only if 2 > 4. Our results are the following analogues of
Theorem 5.1. Theorem 5.2 below concerns the case n =3 and AM =A@ and it
was conjectured and partly proven in Stegeman, Ten Berge, and De Lathauwer [40].
As discussed in section 1, there are a lot of applications using this decomposition. The-
orems 5.3 and 5.4 are generalizations to n = 4 and n = 5, respectively. Theorem 5.5 is a
special case of Theorem 5.4 in which there is symmetry in modes 1 and 2, but also in
modes 3 and 4. This concerns the third order decomposition combined with ICA (re-
sulting in a fifth order decomposition) of De Vos et al. [12]. The proofs of the theorems
below can be found in the appendices.

Tueorem 5.2. Let (AW AW AG)) be a decomposition with generic AV and
rank(A®)) = R. Then U has full column rank if

R(R—1
(.7 BEZD < o),
Hence, the decomposition is unique up to permutation and scaling if (5.7) holds. |

TheoreM 5.3. Let (AN, AM AG) AW be a decomposition with generic (A1), AB))
and rank(AY) = R. Then U®) has full column rank if
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R(R—-1 Is(Is—1) (I3(I; - 1
(5.8) (T>s ro(n) + 12 5 )( 1(12 )+‘P<Il>>-
Hence, the decomposition is unique up to permutation and scaling if (5.8) holds. ]

Tueorem 5.4. Let (AW, A AB) AW A be a decomposition with generic
(AW, AB) AW) and rank(A®)) = R. Then U has full column rank if

< LLO(I) + (1“3 14(142_ Dy I 13(132_ 1)> (I%(I;_ Dy ‘P(Il)>

R(R-1)

Is(I3 = 1) I,(I, = 1) ([;(I; +1) 3131, -1
(59) + 3( 3 ) 4( 4 ) 1( 1 )+ 1( 1 )+Q(Il) )
2 2 2 2
Hence, the decomposition is unique up to permutation and scaling if (5.9) holds. 0

1%

THEOREM 5.5. Let (A(l),A(l),A(3>,A<3),A(")) be a decomposition with generic
(AW, AG)) and rank(A®)) = R. Then UY has full column rank if

R(R-1) I,(I;+1 I3(Is+1 B, —1) 1131
( )g (1 + )q)(fs)+ 3(13 + )q>(]1)+ (L —1)I5(15 - 1)
2 2 2 2 2
(I, -1 I2(I; -1
(5.10) +%T(13) +¥T(Il) + A(Iy, I3).
Hence, the decomposition is unique up to permutation and scaling if (5.10) holds. 0

Below, we compare the generic uniqueness bounds (5.7)—(5.10) to their asymmetric
counterpart (5.3). For several cases, we compute the largest R that satisfies the bound.
Also, we compute the largest R satisfying the generalization (1.3) of Kruskal’s unique-
ness condition (with k4w = R and ky() = min(/;, R) = I, j < n — 1). The results can
be found in Table 1. As also observed in Stegeman [38], the bound (5.3) is a large im-
provement with respect to the bound obtained from (1.3). The most striking observation
is done when comparing (5.3) to (5.7)—(5.10): the bounds on R are much lower in the
presence of symmetry.

This is in line with the fact that the generic or typical rank of a tensor is lower when
it has a form of symmetry; see Ten Berge, Sidiropoulos, and Rocci [44] and Comon et al.
[5]. Uniqueness occurs for values of R lower than the generic or typical rank. For the
cases in Table 1, typical rank results are known only for n = 3. Using the algorithm of
[5], it can be verified that for asymmetric 4 x 4 x I3 tensors, the typical rank values
increase from 8 to 16 when I3 increases from 6 to 16 (for I3 > 16 the typical rank is
16). The asymmetric generic uniqueness bound (5.3) is R < 9. For 4 x 4 x I3 tensors
with symmetry in the first two modes, the typical rank values increase from 7 to 10

TABLE 1
Comparison of uniqueness bounds on R for generic decompositions (AW, ..., A™) with rank(A™) = R,
both without (columns 3 and 4) and with some form of symmetry (column 5).

Bound on R | Bound on R Bound on R
n Size tensor from (1.3) from (5.3) with symmetry
n=3 4x4xI3, Is>R R<6 R<9 R<6 (A =A®)
n=4 4x4x4xI, I,>R R<9 R<46 R<31 (AW =A®)
n=5 | dx4dx4dx4dxI5 Is>R R<12 R<214 R<137  (AM = A®@)
n="5 | 4x4x4x4xI; I;>R R<12 R<214 R<87T (AW =A0Q
and A®) = A(4)
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when I increases from 6 to 10 (for I3 > 10 the typical rank is 10), while the generic
uniqueness bound (5.7) is R < 6.

6. Examples for n =3 and AD = A®@, Here, we illustrate the results in sec-
tions 4 and 5 for the case n = 3 by means of several examples. We denote A = A1) =
A® and set A®) = I, without loss of generality.

Ezample 6.1. Let R =3 and

01

(6.1) A:[(l) -

}, (AGA)=

OO O
— O O O
=N N

Then (A ©® A)d =f @ f with f = (2,2)7 and d = (2, —4,2)T. Hence, condition (4.10)
does not hold, and the decomposition (A, A, I3) is not unique. Since (A ©® A) has full
column rank, Theorem 4.5 implies that any alternative decomposition (A, B, C) satisfies

B = AA for some nonsingular diagonal matrix A. 0
FEzample 6.2. Let R =4 and

(6.2) A=

= O O

1
1
1

S O =
o = O

It can be verified that (A ® A)d =f ® f yields the equations
(6.3) di+dy=f5, j=1.23, dy=fifo=f1fs = fafs

When f contains no zeros, it follows that f; = fy = f3 and d; = dy = d3 = 0. When
f1 =0, we get dy = fof3 =0 and d; = 0. Hence, either f, =0 (implying d, = 0) or
f3 =0 (implying ds =0), and w(d) <1 follows. When starting with f, =0 or
f3 =0, the same result is obtained. This shows that condition (4.10) holds, which im-
plies uniqueness of (A, A, I,). When the matrix U@ is computed, it can be verified that
it has rank R(R — 1) /2 = 6. Note that the right-hand side of (5.7) equals ®(3) = 6.
Hence, after deleting redundant rows, U® is a 6 x 6 matrix. 0

Ezample 6.3. In this example we show that U® having full column rank is not ne-
cessary for uniqueness. In Stegeman [37] this was shown for the asymmetric case. The
smallest R for which we have found such an example is R = 7. Let

(6.4) A=

O O O
OO = O
O = OO
— o O O
— = s
R Oy
N s

The right-hand side of (5.7) equals ®(4) = 20. Hence, after deleting redundant rows,
U® has 20 rows left. Since it has R(R — 1) /2 = 21 columns, it cannot have full column
rank. Next, we show that condition (4.10) holds, which implies uniqueness of (A, A, I;).
It can be verified that (A ® A)d =f ® f yields the equations
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dy + d5 + dg + d7 = f3, ds + 2dg + 8dy = faf3.
ds + 2dg + 4dy = f1 [, ds +4dg + 4d7 = faof s
ds + dg+ 2d; = f1fs,  dy+ ds + dg +4d; = f3,
ds + 2dg + d7 = f1[4. ds +2dg + 2d7 = f3/4.
dy + ds + 4dg + 16d; = f3, dy+ ds +4dg + d; = f3.

Rewriting  (f1f2)(f3fa) = (f1f3)(fofs) vyields dsdg =0. Rewriting (f1f2)(f3f4) =
(f1f2)(fof3) yields 3dsd; + 6dgd; = 0. Together, this implies that at most one of ds,

dg, d; can be nonzero. Let ds # 0 and dg = d; = 0. The equations above imply that
f1:f2:f3:f4¢0, d5:f%, and d1:d2:d3:d4:0. Next, let d6¢0 and
fs=fr=0. Then we obtain f;=/fs, fo=/f1=2f1, dg= f%, and dy =dy, =
d3 = dy; = 0. Analogously, if d; #0 and ds=ds =0, then f,=/f,, fo=4f,
fa=2f, d7 = f%, and dy = dy = d3 = d; = 0. Next, suppose d; # 0. From the above
it follows that ds = dg = d; = 0. This implies d; = f2 #0, fo=f3=f, =0, and
dy = d3 = dy = 0. The cases dy # 0, d3 # 0, d; # 0 can be treated in the same way. This
shows that w(d) < 1. Hence, condition (4.10) holds. O

7. Discussion. In this paper, we have proven necessary, sufficient, necessary and
sufficient, and generic uniqueness conditions for nth order tensor decompositions with
some form of symmetry. The analogues for the asymmetric case can be found in Stege-
man [38]. When comparing the symmetric and asymmetric cases, the following can be
observed. The necessary condition concerning proportional columns (Lemma 3.2) car-
ries over to the symmetric case, although requiring a more complicated proof. The ne-
cessary condition rank((7, y A) = R could be proven for the symmetric case only if
mode j is not included in the symmetry. The remaining case is still an open question. If
rank(A(™) = R and rank(A®) ©---® A" D) = R, then alternative decompositions ne-
cessarily feature the same form of symmetry as the original decomposition (see Theo-
rem 4.5). This fact yields natural analogues of the uniqueness conditions in Theorems 4.1
and 4.3 and Corollary 4.4 (see section 4.2). The most striking difference between the
symmetric and asymmetric case occurs in the generic uniqueness bounds on
R(R — 1) /2 presented in section 5. In the presence of symmetry, these bounds are much
lower than in the asymmetric case.

As mentioned in section 1, decompositions with some form of symmetry mostly oc-
cur in signal processing. For complex-valued decompositions the symmetry often takes
the form of one component matrix being equal to the complex conjugate of another.
Since we consider only the real-valued case, uniqueness of such decompositions is
not directly covered by our results. However, analogous to [38], our results can be trans-
lated easily to the complex case. To do this, we must keep in mind that our vectors live in
a complex vector space C™ with inner product (x,y) = y”x and norm ||x|| = 1/(x, x),
where # denotes the Hermitian or conjugated transpose. As in R™, vectors x and y are
orthogonal when (x,y) = 0. Also, vectors x;, ...,x, € C™ are linearly independent
when a;x;+ --- +a,x, =0 implies a; =---= a, = 0 for scalars a4, ..., a, € C. More-
over, the determinant of a complex matrix is defined identical to the determinant of a
real matrix, and its relation to the matrix rank is identical. The considerations above
imply that, in order to translate our uniqueness proofs to the complex case, we must
replace the ordinary transpose ” by # where orthogonality is involved. However, in cases
where the transpose is due to the formulation of the decomposition such as in (2.1), the
transpose should not be changed. See also [18], where all uniqueness results (for the
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asymmetric decomposition with n = 3) are proven for the complex case. A translation of
our results to the complex case is as follows. Lemmas 3.3 and 3.4 also hold for the com-
plex case. Note that in (3.4) we don’t have to worry about the term under the square root
being positive. The results in section 4.2 also hold for the complex case. In Theorem 4.6
we may take f; equal to the complex conjugate of f; if this holds for A" and AU, The
results of section 5.2 are obtained by identifying minors with identical terms. This meth-
od yields the same results in the complex case. Hence, after translating, the results in this
paper can be applied to complex-valued decompositions as well.

Appendix A. Proofof Theorem 5.2. Here, Yisan I; x I; symmetric matrix Y.
The n — 1 = 2 matrix unfoldings of Y are Y itself and Y7, which are identical. Hence, we
need to consider only the 2 x 2 minors of Y. We denote the equation of a minor as
YijYpq = YiqYpj» Where we refer to y;;y,, as its first term and to y,,y,; as its second term.
For convenience, we use the notation (4, j, p, ¢) for the minor as well. Without loss of
generality, we assume i < pand j < ¢. This yields I3(I; — 1)? /4 minors to start with. In
the asymmetric case, all these minors are nonredundant. With symmetry present, we
proceed as follows.

As stated in section 5.2, we identify minors with identical terms. Since Y is sym-
metric, we have y;; = y;. First, we consider minors with an identical term due to swap-
ping indices in both y of that term. Suppose (41, j1, p1, ¢1) and (is, Jo, Pa, ¢2) are two such
minors. They have identical first terms due to swapping indices in both y if either
(i1, 1) = (Ja. i2) and (p1. ¢1) = (G2, p2), or (i1, 1) = (g2, p2) and (p1, @1) = (J2. ép). In
the latter case we have 4; = ¢y > j, = p; which contradicts #; < p;. Hence, we assume
the former case holds. Since (i1, ¢;) = (Ja, po) and (p1, 51) = (¢a, 92), the symmetry also
implies that their second terms are identical. Analogously, identical second terms due to
swapping indices in both y implies identical first terms. Next, suppose the first term of
(i1, 71, P1, 1) is identical to the second term of (iy, j2, P2, ¢2) due to swapping indices in
both y. Again there are two possibilities. Either (i1, j;) = (¢o, %) and (p1, ¢1) = (Jo, p2),
or (i1, j1) = (42, p2) and (p1, ¢1) = (g, i5). In the former case we have i; = gy > jo = p;
which contradicts 4; < p;. In the latter case we have j; = py > iy = ¢; which contradicts
Jj1 < q;- Hence, both cases are impossible. Therefore, having identical terms due to swap-
ping indices in both y implies having completely identical minors. These identical minors
are excluded by adding the following constraint on (4, 7, p, q):

(A1) (i,p) < (4, q) & eitheri<j or (i=j&p<yq).

The number of minors we are left with equals

(A2) 311(112—1) <11(112—1)+1).

Next, we consider minors (%, j1, p1, ¢1) and (s, 2, P2, ¢2) With an identical term due to
swapping the indices of only one y in that term. When their first terms are identical, we
have four possibilities:

(A.3) (i1, 1) = (2. J2) and  (p1. @) = (g2.p2), or
(A4) (i1, 51) = (Jo.i2) and  (p1, @) = (P2, 2), or
(A.5) (i1.J1) = (P2, @2) and  (p1, 1) = (Jo. d2), or
(A.6) (i1.J1) = (¢2.p2) and  (p1, q1) = (ia. ).
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In (A.5) we have iy = py > iy, = ¢ and 4 < p; = jy < ¢ = j; < ¢ which contradict
each other. In (A.6) we have j; = py > iy = p; and j; < ¢, = ja < g2 = 4; < p; which
contradict each other. In (A.4) we have (i1, p1) < (41, ¢1) and (41, p1) < (41, ¢1), which
implies 4; = j; = iy = j,. Hence, we have only one minor instead of two. In (A.3) we
have (i1, p1) < (J1, ¢1) and (41, ¢1) < (J1, p1), which implies p; # ¢; and ¢; < j; in order
to have two minors. Hence, (A.3) is possible for

(A7) i <j1<pr<q or i <j<q <p.

Analogously, it can be shown that the two minors have identical second terms due
to swapping indices in one y only if (if, ¢1) = (4, ¢2) and (py, 1) = (Ja, p2), which
implies

(A.8) W<jp<pr<q or ig<p<j<q.

Also, we obtain that the first term of (4, j1, p1, ¢;) is identical to the second term of
(i9, 2, P2, g2) due to swapping indices in one y only if (i1, 51) = (i, ¢2) and (py, ;) =
(j2, p2), which implies i; < p; < j; < ¢;. Together with (A.7) and (A.8), this implies
that for 7 < j < p < ¢ the following holds:

e Minor (4, j, p, q) has second term identical to second term of minor (4, p, 7, q).

e Minor (4, p, j, ) has first term identical to second term of minor (4, j, g, p).

e Minor (4, J, ¢, p) has first term identical to first term of minor (4, j, p, q).
Hence, each i < j7 < p < g identifies three minors of which one is redundant. The num-
ber of subsets (4, j, p, ¢) with ¢ < j < p < ¢ equals ([41), which is equal to the number of
redundant minors due to identical terms by swapping indices of one y only. Therefore,
the total number of nonredundant minors equals (A.2) minus (/}), which is exactly
®(I,). This completes the proof.

Appendix B. Proof of Theorem 5.3. Here, Y is an I; x I; x I3 tensor with
symmetry in the first two modes. We denote the I; x I; symmetric frontal slices of
Y as Yy, ..., Y. The first and second matrix unfoldings are given by [Yi|...|Y]
and [Y]
indices. A minor of a matrix unfolding of Y corresponds to an equation y,yp =
ygYc, where A, B, C, D contain three indices. Let dif(A4, D) denote the number of dif-
ferent indices in A and D (i.e., indices with different values at the same position). We
have dif(A, D) € {2,3}. We refer to this number as the order of the minor. Hence, a
minor can have order 2 or 3, where a minor of order 2 has one fixed index. An order
2 minor with fixed third index is a 2 X 2 minor of a slice Y;, and corresponds to an equa-
tion Yk Ypek = YigkYpji- From the proof of Theorem 5.2, it follows that of such minors

e |Y[7;]7 respectively. Hence, they are identical. The entries of Y have three

there are
(B.1) 130(1)

nonredundant. Indeed, there are I3 symmetric frontal slices, and each slice has ®(1;)
nonredundant minors. By symmetry, the minors of order 2 with fixed first index are
identical to the minors of order 2 with fixed second index. These correspond to
YijkYigr = YijrYige, Where we set j < ¢ and k < r without loss of generality. Since the
third indices &k and r are distinct, these minors do not share terms with the order 2 min-
ors having fixed third index. It follows that there are
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Ii(I — 1) I3(1; — 1)
2 2

(B.2) I

nonredundant minors of order 2 with first (or second) index fixed. Next, we consider
minors of order 3. As observed in [38], each such minor corresponds to a 2 x 2 x 2 sub-
tensor of Y with frontal slices

(B.3) Yijk  Yigk and Yijr yiqr’
Ypjk  Ypak Ypjr  Ypgr

where weset © < p, j < ¢, k < r without loss of generality. By symmetry, swapping ¢ and
J, and p and g, yields an identical subtensor. Hence, we add the constraint (4, p) < (4, ¢).
Analogous to (A.2), this yields a total number of subtensors equal to

B4 Iy(I; — 1) I, (1, 1) (h(h -1 1)_

2 4 2

It is shown in [38, section 5.2] that, in absence of symmetry, each subtensor corresponds
to six distinct minors of order 3 that equate four distinct terms. Only three of the six
minors are nonredundant. These can be written as

(B5) yijkypqr = ypjkyiqr = yiqkypjr = yijryqu-

In the asymmetric case, [38] shows that minors corresponding to different subtensors do
not have identical terms. Moreover, minors of different orders do not have identical
terms. In the current symmetric case, this is not true.

A subtensor (i, 4, k, p, ¢, r) with 4, j, p, ¢ distinct does not share terms with a minor
of order 2, since the terms do not have fixed indices. Next, suppose i, j, p, ¢ are not
distinct. We have the following cases. If i = j and p = ¢, then y,;1¥isr = Yigr¥pjr in
(B.5) and the subtensor has two nonredundant minors instead of three. If i = j and
P < ¢, then ypiuYior = YipkYiqr 15 €qual t0 Y, Yigk = Yigr¥pjr By an order 2 minor having
fixed first index. Hence, here also the subtensor has two nonredundant minors. Analo-
gOHSly, if i < ] and p=q then YpixYiqgr = YpjikYpir is equal to YpirYpik = YigkYpjr by an
order 2 minor. Finally, if i < j = p < ¢, then y,;1Y,qr = Yjir¥jqr 15 equal to ¥,y =
YijrYpqk Dy an order 2 minor. We conclude that in all cases where 4, j, p, g are not distinct
the subtensor (4, j, k, p, ¢, ) has two nonredundant minors.

Next, we consider two subtensors, denoted by (i, j1, ki, p1, ¢1, 1) and (iy, jo, ko,
P2, 4o, T2), and determine which of the four terms of subtensor 1 can be identical to
a term of subtensor 2 by swapping the first two indices in y. First, we consider identical
terms due to swapping indices of two y in a term. It can be shown that this is not pos-
sible. In each case, a contradiction with i; < pq, 71 < q1, k1 < ry is obtained, or the two
subtensors are identical. The proof of this is in the same way as the proof of Theorem 5.2,
and it is omitted. Furthermore, it can be shown (proof omitted) that if the subtensors
have identical terms due to swapping indices of one y in a term, then 4, j;, p;, q; are
distinct (and 4y, jo, po, ¢ as well).

Let 4, j, p, q be distinct with ¢ < j < p < ¢. Also, let k < r. It can be shown that
identical terms occur only within groups of three subtensors (i, 7, k, p, q.r), (4,7, k,
q,p,r), and (4,p, k, 7, ¢, 7). We refer to the four terms in (B.5) as the terms 1, 2, 3, 4
in order of appearance. As in the proof of Theorem 5.2, the following hold:

e Subtensor (4, j, k, p, ¢, ) has terms 1 and 4 identical to terms 1 and 4 of sub-
tensor (i, 7, k, g, p, ), respectively.
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e Subtensor (4, j, k, ¢, p, ) has terms 2 and 3 identical to terms 4 and 1 of sub-
tensor (4, p, k, j, q, r), respectively.
e Subtensor (4, p, k, j, ¢, ) has terms 2 and 3 identical to terms 2 and 3 of sub-
tensor (i, 7, k, p, g, T), respectively.
It follows that the three subtensors together (which have twelve terms in total) have six
distinct terms that should all be equal. Five minors are enough for this, and these are
nonredundant. The total number of groups of three subtensors as above equals
(I3(I3 — 1) /2)(!}). Counting two nonredundant minors per subtensor, the total number
of nonredundant minors of order 3 equals two times (B.4) minus (I3(I3 — 1) /2)(}),
which can be rewritten as

(B.6) w <2q>(11) + ({f )) - 13(13#—1)?([1)‘

Adding (B.1), (B.2), and (B.6) yields the right-hand side of (5.8). This completes
the proof.

Appendix C. Proof of Theorem 5.4. Since this proof is a fairly straightforward
generalization of the proof of Theorem 5.3, we will be briefer in its presentation. The
tensor Y has size I; x I; x I3 x I, and is symmetric in the first two modes. A minor of a
matrix unfolding of Y corresponds to an equation y ,yp = ygyc, where A, B, C, D con-
tain four indices. The order of a minor is equal to dif(A, D) € {2, 3,4}. Analogous to
(B.1), the number of nonredundant minors of order 2 with fixed third and fourth indices
equals

(C.1) I,1,®(I).

Analogous to (B.2), the number of nonredundant minors of order 2 with fixed first (or
second) and third indices equals
LI — 1) 141, — 1)

(C.2) LI SR

The number of nonredundant minors of order 2 with fixed first (or second) and fourth
indices equals
LI —1) 1513 — 1)

. 11 .
(€3) I :

For a minor of order 2 with fixed first and second indices, the latter can be swapped to
obtain an identical minor. The number of unique pairs of first and second indices equals
I,(I; + 1) /2. Hence, the number of nonredundant minors of this type equals

L+ 1) I3(13 - 1) (I, - 1)

(C.4) : . T

Next, we consider minors of order 3. These have one fixed index and define 2 x 2 x 2
subtensors of Y analogous to (B.3). Analogous to (B.6), the number of nonredundant
minors of order 3 with fixed third or fourth index equals

L(I, -

1 Io(I5 —
5 )w(11)+14—3(3

(C.5) I Y.
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Of the minors of order 3 with first or second index fixed, we need only consider those with
first index fixed. Analogous to (B.5), the three minors corresponding to a 2 x 2 x 2 sub-
tensor of Y can be written as

(06) YijkiYiqrs = YightYijrs = YijriYigks = YijksYiqris

where j < g, k < r, [ < s. Since there is no symmetry in the second, third, and fourth
indices, all three minors of a subtensor are nonredundant. This yields a number of non-
redundant minors of order 3 with first (or second) index fixed equal to

I(1 = 1) I35 — 1) I,(I, — 1)

. 1
(C.7) 31 5 5 >

Finally, we consider minors of order 4. As observed in [38], each such minor corresponds
to a 2 x 2 x 2 x 2 subtensor of Y with frontal 2 x 2 x 2 tensors

(08) |: Yijkl Yiqkl ’ Yijrl Yigri :| and |: Yijks Yigks ‘ Yijrs Yigrs :| ’

ypjkl Ypakl ypjrl Ypagri ypjks Ypqks ypjrs Ypgrs

where we set i < p, j < ¢, k < r, | < s without loss of generality. As in the proof of The-
orem 5.3, we add the constraint (4, p) < (j, ¢). Analogous to (B.4), this yields a total
number of subtensors equal to

(©9) Iy(I; — 1) L,(1, ~ 1) 11<114 -1 (11(112 -1 1)_

2 2

It is shown in [38, section 5.2] that, in absence of symmetry, each subtensor corresponds
to 16 distinct minors of order 4 that equate 8 distinct terms. Only 7 of the 16 minors are
nonredundant. These can be written as

YijklYpqrs = YijksYpgri = YpikiYigrs = YpjksYiqri

(ClO) = yiqklypjrs = yiqksypjrl = yijrlyqus = yijrsyqul'

Note that the form of the 8 terms is analogous to (B.5). Analogous to the proof of The-

orem 5.3, it can be shown that if i = jand p = ¢, orif i = jand p < ¢, orif i < j and

p = gq,orif i < j = p < ¢, then the subtensor has only four nonredundant minors. When

i, 7, P, q are distinct, identical terms occur only between subtensors (3, j, k, [, p, ¢, 7, 5),

(i,4,k, 1, q,p,r, 8), and (4,p, k, 1, 4, g, 7, s). Analogous to the proof of Theorem 5.3, the

following hold:

e Subtensor (4, 7, k, I, p, ¢, r, s) has terms 1, 2, 7, 8 identical to terms 1, 2, 7, 8 of
subtensor (4, j, k, I, ¢, p, T, 8), respectively.

e Subtensor (4, 4, k, 1, ¢, p, r, s) has terms 3, 4, 5, 6 identical to terms 8, 7, 1, 2 of
subtensor (i, p, k, 1, 7, ¢, 7, s), respectively.

e Subtensor (i, p, k, [, j, ¢, r, s) has terms 3, 4, 5, 6 identical to terms 3, 4, 5, 6 of
subtensor (i, 7, k, I, p, ¢, T, s), respectively.

It follows that the three subtensors together (which have 24 terms in total) have 12
distinct terms that should all be equal. Only 11 minors are enough for this, and these
are nonredundant. The total number of groups of three subtensors as above equals
(I3(I3 — 1) /2)(14(1, — 1) /2)(%}). Counting four nonredundant minors per subtensor,
the total number of nonredundant minors of order 4 equals four times (C.9) minus
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(I3(I3 — 1) /2)(14(I, — 1) /2)(}), which can be rewritten as

(C.11) 13(132* D) 14(142* D (4@(11) + 3(141 >> = 13(132* D) 14(142* 1)9(11).

Adding (C.1)-(C.5), (C.7), and (C.11) yields the right-hand side of (5.9). This completes
the proof.

Appendix D. Proof of Theorem 5.5. Here, we consider the special case of The-
orem 5.4 in which A®) = A®. The tensor Y has size I; x I; x I x I; and is symmetric
in the first two modes and in the last two modes. The numbers of nonredundant minors
of orders 2 and 3 follow from the proof of Theorem 5.4. First, we consider minors of order
2, which have two indices fixed. Suppose the first and second index are fixed. By sym-
metry, there are I;(I; 4+ 1) /2 unique pairs of the first two indices. Analogous to (C.1),
we obtain (I;(I; + 1) /2)®(I5) nonredundant minors of this type. For the minors with
fixed third and fourth indices, we can simply swap I; and I3 to obtain the number of
nonredundant minors. The number of nonredundant minors with fixed first (or second)
and third (or fourth) indices is analogous to (C.2) and (C.3). For the total number of
nonredundant minors of order 2, we obtain

(1, = 1) I3(I5 — 1)

I I, 1. .
(1) + 113 5 B

Ii(I; +1)

Is(1 1
. 3(I5 + )CD

(D.1) .

O(13) +

Next, we consider minors of order 3, which have one index fixed. Analogous to (C.5), the
number of nonredundant minors with first (or second) index fixed plus the number of
nonredundant minors with third (or fourth) index fixed equals

L(I -

5 1)T([3)+[3M

(D.2) I, .

P(I,).

Finally, we consider minors of order 4, which correspond to 2 x 2 x 2 X 2 subtensors as
in (C.8). Since we have symmetry in the first two and the last two modes, we require not
only (4, p) < (4, ¢) but also (k, r) < (I, s). This yields a total number of subtensors equal
to

D3) <11(114— 1) (11(112— b, 1)) <13(134— 1) (13(132— b, 1>)

It can be shown that if 4, j, p, g are not distinct and also k, [, r, s are not distinct, then the
subtensor has only two nonredundant minors. If 4, j, p, g are not distinct, but k, [, r, s are
distinct, then the three subtensors (i, j, k, I, p, ¢, 7, 8), (3,5, k. [, p, ¢, s, 7), (4,4, k, r, p, q.
I, s) together have six nonredundant minors. Analogously, if i, j, p, ¢ are distinct,
but k, I, r, s are not, then the three subtensors (i, 74, k, I, p, ¢, 7, 8), (4,5, k 1, ¢, p, 7, 9),
(i,p, k., 1, 4, g, 7, s) together have six nonredundant minors. Hence, in these cases there
are two nonredundant minors per subtensor.

Ifi<j<p<gqgandk <1< r < s, thenidentical terms occur only within a group of
nine subtensors: (4,7,k L p,qr,s), (i,5, k1 qp,r.8), (4,p.kljqrs), (i7,k]I
p.q.s1), (i.j.klqgpsr), (ipkljgsr), (i.jkrpals), (ijkrqgpls),
and (i, p, k, 7, 4, ¢, I, s). It can be shown that these 9 subtensors together have 18 distinct
terms that should all be equal. Only 17 minors are enough for this, and these are non-
redundant. The total number of groups of 9 subtensors as above equals (/1) (%). Count-
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ing two nonredundant minors per subtensor, the total number of nonredundant minors

of order 4 equals two times (D.3) minus (/)(%), which can be rewritten as

(D.4) 2(®(Il)+ ({f)) (@(13)+ ({f)) - ({f) (143) — AU Ty).

Adding (D.1), (D.2), and (D.4) yields the right-hand side of (5.10). This completes
the proof.
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